引用本文: | 徐立鸿,冯纯伯.多变量加权多步预报控制*[J].控制理论与应用,1992,9(3):238~244.[点击复制] |
XU Lihong and FENG Chunbo.Multivariable Weighted Long-Range Predictive Control[J].Control Theory and Technology,1992,9(3):238~244.[点击复制] |
|
多变量加权多步预报控制* |
Multivariable Weighted Long-Range Predictive Control |
摘要点击 1202 全文点击 504 投稿时间:1990-09-25 修订日期:1991-06-17 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1992,9(3):238-244 |
中文关键词 多变量系统 预测控制 极点配置 闭环稳定性 非最小相位系统 |
英文关键词 multivariable system predictive control pole-placement closed-loop stability unminimum phase systems |
基金项目 |
|
中文摘要 |
对于线性多变量系统,本文给出了一种完全不同于以往的全状态反馈或观测器-控制器型的算法——多变量加权多步预报控制(MWLPC)算法。这种算法除引进了预测控制中的多步输出预报、滚动优化等机制外,最重要的是在二次型性能指标中引入了可调的多项式或有理分式矩阵权因子;适当选取这些权因子,便可按设计要求、仅用系统的输出信息反馈便能任意配置闭环系统的特征矩阵,从而保证闭环稳定性和其他优良性质。此外,该算法不改变原系统的零点,因而适用于非最小相位系统。 |
英文摘要 |
This paper gives a new type of multivariable controller-Multivariable Weighted Long-range Predictive Controller (MWLPC). Besides using some mechanics of predictive control in MWLPC, we introduce some weighting polynomial matrices or rational fraction matrices which can be adjusted by designer in the cost function. Only using the system output information feedback, we can set arbitrarily the closed-loop characteristic matrix by choosing the proper weighting factors, and so the closed-loop stability can be ensured and the steady-state tracking errors can be eliminated. In addition the MWLPC can be also used in a unminimum phase systems. |