引用本文:郑大钟.线性调节器问题的一种次优控制律和最有性能的一个估计不等式[J].控制理论与应用,1985,2(3):74~83.[点击复制]
Zheng Dazhong.A SUBOPTIMAL CONTROL LAW AND THE INEQUALITY FOR ESTIMATING THE OPTIMAL COST FOR LQ REGULATOR PROBLEM[J].Control Theory and Technology,1985,2(3):74~83.[点击复制]
线性调节器问题的一种次优控制律和最有性能的一个估计不等式
A SUBOPTIMAL CONTROL LAW AND THE INEQUALITY FOR ESTIMATING THE OPTIMAL COST FOR LQ REGULATOR PROBLEM
摘要点击 726  全文点击 442  投稿时间:1984-02-23  修订日期:1984-05-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1985,2(3):74-83
中文关键词  
英文关键词  
基金项目  
作者单位
郑大钟 清华大学 
中文摘要
      本文通过把一个线性定常系统看成为对称系统的一个虚参数摄动系统,给出了线性二次型调节器问题的次优控制律和次优性能值的一种简单计算方法。这种方法的一个有点是无需对通常的Riccati 方程进行数值求解。文中同时给出了估计最优性能的一个不等式,提供了估计其上、下界的一个方便的途径。
英文摘要
      In order to determine the optimal control law and optimal cost for the linear-quadratic (LQ) regulator problem, we have to solve a matrix Riccati equation. Generally speaking, this is not a simple task and it usually can be carried out only by numerical methods. Obviously, the larger the size of the systems, the more complicated the computation in solving the Riccati equation will be. In this paper, a simple approach is presented to determine a suboptimal control law and its associated cost for LQ regulator problem without solving a matrix estimate the upper and lower bounds of the optimal cost by means of simple computations. An example is given to illustrate the computation procedures.