引用本文: | 毛剑琴.线性系统能控性、能观测性的数值判断[J].控制理论与应用,1986,3(1):58~67.[点击复制] |
Mao Jianqin.NUMERICAL DETERMINATION OF THE CONTROLLABILITY AND OBSERVABILITY OF LINEAR SYSTEMS[J].Control Theory and Technology,1986,3(1):58~67.[点击复制] |
|
线性系统能控性、能观测性的数值判断 |
NUMERICAL DETERMINATION OF THE CONTROLLABILITY AND OBSERVABILITY OF LINEAR SYSTEMS |
摘要点击 1132 全文点击 503 投稿时间:1984-08-09 修订日期:1985-03-04 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1986,3(1):58-67 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
本文讨论数字计算机判断线性、时不变系统能控性、能观测性的问题。引入了矩阵数值秩的概念以及通过奇异值判断矩阵数值秩的防范。在此基础上给出了线性系统能控性、能观测性数值判断的概念和防范。以Schuler平台的初始对准问题为例说明了这一方法。利用奇异值扰动的性质,进行了系统能控性、能观测性的鲁棒性分析。 |
英文摘要 |
This paper discusses the determination of controllability and observability of the linear time invariable systems by using the digital computer. The numerical rrnk of a matrix is introduced and the method of finding the numerical rank by means of singular values is reviewed. The concept of numerical determination of the controllability and observability is developed and an implemental algorithm is given.
As an example, the alignment of a Schuler platform is discussed. According to the perturbational properties of singular values, the robustness of controllability and observability is also analysed. |
|
|
|
|
|