引用本文:叶庆凯.Schur法解Riccati方程时的一种加速解法[J].控制理论与应用,1987,4(2):19~28.[点击复制]
Ye Qingkai.AN ACCELERATED METHOD FOR SOLVING RICCATI EQUATIONS BY SCHUR METHOD[J].Control Theory and Technology,1987,4(2):19~28.[点击复制]
Schur法解Riccati方程时的一种加速解法
AN ACCELERATED METHOD FOR SOLVING RICCATI EQUATIONS BY SCHUR METHOD
摘要点击 1240  全文点击 562  投稿时间:1985-10-03  修订日期:1986-08-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1987,4(2):19-28
中文关键词  
英文关键词  
基金项目  
作者单位
叶庆凯 北京大学 
中文摘要
      当前,在解代数Riccati方程的各种方法中,Schur向量法是一种相当有效的算法。Schur向量法的关键在于交换伪上三角形矩阵对角线上的对角块的位置。以前,均使用EXCHNG程序来实现这一交换过程。它用的是QR方法,因而占用了很大一部分计算时间。本文提出用一种直接方法来实现这一交换,可节省一些计算时间。
英文摘要
      There are many kinds of methods to solve algebraic matrix Riccati equation. Of these methods, the Schur method is quite efficient one. The key of Schur method is to exchange the diagonal blocks in the upper pseudo-triangular matrix. In literature, usually use Programme EXCHNG to implement this requirement. It uses QR iteration method, so that spends a lot of computing time. In this paper, a kind of direct method for exchanging two diagonal blocks is given and it can save some computing time.