引用本文: | 朱维彰.线性随机微分方程与其ARMA形式的采样模型[J].控制理论与应用,1987,4(2):47~56.[点击复制] |
Zhu Weizhang.STOCHASTIC DIFFERENTIAL EQUATION AND ITS SAMPLED MODEL IN THE FORM OF ARMA[J].Control Theory and Technology,1987,4(2):47~56.[点击复制] |
|
线性随机微分方程与其ARMA形式的采样模型 |
STOCHASTIC DIFFERENTIAL EQUATION AND ITS SAMPLED MODEL IN THE FORM OF ARMA |
摘要点击 1606 全文点击 487 投稿时间:1984-12-01 修订日期:1986-02-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1987,4(2):47-56 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
本文基于自协方差函数讨论了ARMA(n, n-1)与线性随机微分方程(LSDE)的关系,证明了ARMA(n, n-1)是LSDE的采样模型的三种不同形式的充要条件(适用于不同情况)。这些充要条件是一组关于ARMA(n, n-1)与LSDE参数变换的方程。当n=1, 2, 3, 4, 5时,这组方程的实际解法及实例计算也被给出。 |
英文摘要 |
It is investigated on the basis of the autocovariance function that ARMA(n, n-1) is a sampled model of a linear stochastic differential equation(LSDE). The sufficient and necessary conditions for that in three forms applying to different cases, which are the expressions of the parameter transform between ARMA(n, n-1) and LSDE, are proven. The practical solutions and some examples with n=1, 2, 3, 4, 5 are given. |
|
|
|
|
|