引用本文: | 胡跃明.线性多时滞差分微分系统全时滞稳定的代数判据[J].控制理论与应用,1987,4(3):40~47.[点击复制] |
Hu Yueming.ALGEBRAIC CRITERIAS OF STABILITY FOR ALL DELAYS IN LINEAR DIFFERENTIAL-DIFFERENCE SYSTEM WITH MULTIPLE DELAYS[J].Control Theory and Technology,1987,4(3):40~47.[点击复制] |
|
线性多时滞差分微分系统全时滞稳定的代数判据 |
ALGEBRAIC CRITERIAS OF STABILITY FOR ALL DELAYS IN LINEAR DIFFERENTIAL-DIFFERENCE SYSTEM WITH MULTIPLE DELAYS |
摘要点击 1134 全文点击 559 投稿时间:1985-11-11 修订日期:1986-03-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
1987,4(3):40-47 |
中文关键词 |
英文关键词 |
基金项目 |
|
中文摘要 |
考虑下列线性多时滞差分微分系统
x’(t) = A0x(t) + ∑Akx(t – Tk*r) (1)
其中x∈Rn,Ak(k=0, 1, …, N)是n*n常数矩阵;Tk=(Tk1, Tk2, …, TkM),Tkj(k=1, …, N; j=1, …, M)是整数,rT=(r1, r2, …, rM),Tk*r=∑Tkj*rj。本文利用Lyapunov函数和Lyapunov泛函,给出了系统(1)全时滞稳定的代数条件,克服了Hale文中验证“超越”条件的困难,为实际工作者提供了十分有效而方便的判别方法。 |
英文摘要 |
In this paper, the author discusses the following linear differential-difference systems;
x’(t) = A0x(t) + ∑Akx(t – Tk*r) (1)
Where x∈Rn,Ak(k=0, 1, …, N) are constant matrices, Tk=(Tk1, Tk2, …, TkM),Tkj(k=1, …, N; j=1, …, M) are nonnegative integers, rT=(r1, r2, …, rM),Tk*r=∑Tkj*rj, some algebraic criteria of stability for all delays of system (1) are given by using Lyapunov’s direct method. These results are very useful in real applications. |
|
|
|
|
|