引用本文:张友民 李庆国 戴冠中 张洪才.基于奇异值分解的递推辨识方法[J].控制理论与应用,1995,12(2):224~229.[点击复制]
ZHANG Youmin, LI Qingguo, DAI Guanzhong and ZHANG Hongcai.A New Recursive Identification Method Based On Singular Value Decomposition[J].Control Theory and Technology,1995,12(2):224~229.[点击复制]
基于奇异值分解的递推辨识方法
A New Recursive Identification Method Based On Singular Value Decomposition
摘要点击 1183  全文点击 470  投稿时间:1994-02-14  修订日期:1994-08-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1995,12(2):224-229
中文关键词  奇异值分解  递推最小二乘辨识  无偏估计  持续激励
英文关键词  singular value decomposition  recursive least square identification  un-biased estimation  persisten excitation
基金项目  
作者单位
张友民 李庆国 戴冠中 张洪才 西北工业大学自动控制系 
中文摘要
      本文提出一种基于奇异值分解(SVD)的递推最小二乘辨识新方法,该方法不仅有很好的收敛性和数值稳定性,而且在系统的输入信号不满足持续激励的充分必要条件下,仍能得到系统参数的无偏估计,仿真计算结果证明了本文方法的有效性和优越性。
英文摘要
      Based on singular value decomposition(SVD), this paper develops a recursive least square identification method, which takes in account input excitation. It is demonstrated that the SVD-based approach proposed in here can not only obviously improve the convergency rate, numerical stability of RLS, but also provide much more precise identification results and greatly enhance the robustness of the system identification. More over, this algorithm is formulated in the form of vector-matrix and matrix- matrix operations, so it is useful for parallel computers.