引用本文:裴海龙,周其节.基于神经网络的非线性系统近似线性化[J].控制理论与应用,1998,15(1):31~38.[点击复制]
PEIHailong and ZHOU Qijie.Approximate Linearization of Nonlinear Systems A Neural Network Approach*[J].Control Theory and Technology,1998,15(1):31~38.[点击复制]
基于神经网络的非线性系统近似线性化
Approximate Linearization of Nonlinear Systems A Neural Network Approach*
摘要点击 1014  全文点击 492  投稿时间:1996-04-15  修订日期:1997-04-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1998,15(1):31-38
中文关键词  神经网络  近似线性化
英文关键词  neural networks  approximation  linearization
基金项目  
作者单位
裴海龙,周其节  
中文摘要
      神经网络具有同时逼近某一函数及其高阶导数的功能, 这一结果为神经网络在非线性系统中的应用提供了可行的工具, 本文提出了一种利用网络近似功能的非线性系统的近似线性化方法, 无论系统是否满足可积条件, 神经网络都可实现其对合条件的近似积分, 从而构造满足系统近似线性化的反馈控制. 对球一杆系统的仿真结果显示了这种方法的有效性,
英文摘要
      Recent researches show that neural networks have the ablilty to approximate a function as well as its derivatives. This result offers a promising opportunity to introduce neural network theory into nonlinear system control. In this paper a novel method of approximate nonlin-ear svstem linearization with neural networks is proposed. The network approximator is designed to integrate the involutive equation of a nonlinear system whether the integrability condition is satisfied or not. Simulation results show that this method is feasible.