引用本文:卢 进,徐文立, 韩曾晋.神经网络并联辨识算法的收敛性研究[J].控制理论与应用,1998,15(5):741~745.[点击复制]
LU Jin, XU Wenli and HAN Zengjin.Research on Parallel Identification Algorithm of Neural Networks[J].Control Theory and Technology,1998,15(5):741~745.[点击复制]
神经网络并联辨识算法的收敛性研究
Research on Parallel Identification Algorithm of Neural Networks
摘要点击 1373  全文点击 523  投稿时间:1995-01-17  修订日期:1996-08-02
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  1998,15(5):741-745
中文关键词  神经网络  非线性动态系统  并联辨识算法
英文关键词  neural network  nonlinear dynamic system  parallel identification algorithm
基金项目  
作者单位
卢 进,徐文立, 韩曾晋  
中文摘要
      神经网络可用来建立非线性动态系统的模型,其辨识模型可分为串并联辨识模型和并联辨识模型两种,后者的思想源予基于参考模型自适应方案的输出误差辨识模型,对观测扰动有较强的抑制能力. 本文对这种神经网络并联辨识结构的收敛性进行了研究,指出在网络参数满足一定条件时并联预测过程收敛,且并联辨识算法具有局部收敛性,仿真实验验证了上述结构.
英文摘要
      Neural networks can be used to set up models of nonlinear dynamic systems. Their identifica-tion models are classified as series-parallel model and parallel model. The latter one is developed from the out-put error identification model based on the reference model adaptive scheme,which has stronger capability to control observation noise. ln this paper,we study the convergence of this parallel identificaticn model and find that while the parameters of neural networks meet some prerequisites,the parallel prediction model converges and the parallel identificatin algorithm is locally convergent. Simulation results demonstrate the above conclu-sions.