引用本文:鲍 鸿,黄心汉,李锡雄,毛宗源.用模糊RBF神经网络简化模型设计多变量自适应模糊控制器[J].控制理论与应用,2000,17(2):169~174.[点击复制]
BAO Hong,HUANG Xin-han,LI Xi-xiong,MAO Zong-yuan.Design a Multivariable Adaptive Fuzzy Controller by Fuzzied Radial Basis Function Network Simplified Model[J].Control Theory and Technology,2000,17(2):169~174.[点击复制]
用模糊RBF神经网络简化模型设计多变量自适应模糊控制器
Design a Multivariable Adaptive Fuzzy Controller by Fuzzied Radial Basis Function Network Simplified Model
摘要点击 2254  全文点击 1008  投稿时间:1998-03-24  修订日期:1999-04-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2000.2.004
  2000,17(2):169-174
中文关键词  模糊控制  模糊神经网络  RBF网络  过程控制
英文关键词  fuzzy control  fuzzy neural network  the RBF network  processing control
基金项目  广东省自然科学基金资助项目(960101).
作者单位
鲍 鸿 华中理工大学 自动控制工程系, 武汉 430074 
黄心汉 华中理工大学 自动控制工程系, 武汉 430074 
李锡雄 广东工业大学 电气工程及自动化系, 广州 510090 
毛宗源 华南理工大学 自动控制工程系, 广州 510640 
中文摘要
      针对多变量系统实时性要求, 提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法, 并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析, 提出一种系统动态增益的处理方法和基于过程最优的改进方案. 仿真实验结果表明该控制器可实现实时自适应控制, 改进算法是有效的.
英文摘要
      This paper presents a simplified model and the corresponding algorithm of fuzzy radial basis function (RBF) networks to solve the real time control of multivariable process. Authors also analyze the self learning algorithm of multivariable fuzzy controller designed by this simplified model and discuss a new method to treat system dynamics gain in the self learning algorithm. Furthermore a modified self learning algorithm is presented based on process parameters optimization. Finally computer simulation results of an industrial process verify that the simplified model and the modified algorithm are available and effective.