引用本文:李 迪,T.Srikathan,井上胜境.弧焊过程神经网络模糊控制(英文)[J].控制理论与应用,2001,18(3):401~408.[点击复制]
LI Di,T. Srikanthan,Inoue Katsunori.Neural Fuzzy Logic Control for Gas Tungsten Arc Welding[J].Control Theory and Technology,2001,18(3):401~408.[点击复制]
弧焊过程神经网络模糊控制(英文)
Neural Fuzzy Logic Control for Gas Tungsten Arc Welding
摘要点击 1635  全文点击 1154  投稿时间:2000-03-03  修订日期:2000-12-26
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2001.3.016
  2001,18(3):401-408
中文关键词  模糊逻辑  神经网络  隶属函数  钨极保护气体氩弧焊
英文关键词  fuzzy logic  neural network  membership function  gas tungsten arc welding
基金项目  
作者单位
李 迪 华南理工大学 机电系, 广州 510604 
T.Srikathan 南洋理工大学 应用科学学院, 新加坡 
井上胜境 大阪大学 接合科学研究所, 日本 
中文摘要
      提出一种将FLC与神经网络技术相结合的方法对钨极氩弧焊(GTAW )过程进行控制. 它克服了模糊规则产生对专家的依赖及模糊集非自适应性的问题. 隶属函数的自适应及模糊规则的自组织通过神经网络的自学习和竞争获得. 该方法实现了弧焊过程中模糊规则的自动确定和隶属度函数的在线调节. 以GTAW过程焊缝几何参数调节为对象, 验证了算法的有效性. 计算机仿真表明, 采用该方法的系统性能有较大的提高.
英文摘要
      A novel technique, that combines the FLC and neural network (NN) techniques, to control the gas tungsten arc welding (GTAW) process is presented. This technique overcomes the limitations such as the dependency on the experts for fuzzy rule generation, the fuzzy set that is non adaptive, etc. The adaptation of membership function as well as the self organizing of fuzzy rule are realized by the self learning and competitiveness of the NN. This approach facilitates a mechanism for an automatic determination of the fuzzy rule and in process adaptation of membership function for an advanced welding process control. This is because a fixed membership function cannot guarantee the required system performance, as the arc welding process is a highly time variable system. Taking GTAW process welds bead width that regulates the system as the controlled plant, the proposed algorithm has been verified to be highly effective for an arc welding process. Computer simulations confirm that the characteristics of the system have improved notably when compared with a number of currently available methods.