引用本文:阮小娥,万百五,高红霞.非线性工业过程控制系统的迭代学习控制与收敛性分析[J].控制理论与应用,2002,19(1):73~79.[点击复制]
RUAN Xiao'e,WAN Baiwu,GAO Hongxia.The Iterative Learning Control and Convergence Analysis for Nonlinear Industrial Process Control Systems[J].Control Theory and Technology,2002,19(1):73~79.[点击复制]
非线性工业过程控制系统的迭代学习控制与收敛性分析
The Iterative Learning Control and Convergence Analysis for Nonlinear Industrial Process Control Systems
摘要点击 2093  全文点击 1542  投稿时间:1999-10-12  修订日期:2001-06-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2002.1.015
  2002,19(1):73-79
中文关键词  迭代学习控制  非线性工业过程  稳态优化  可达性  收敛性
英文关键词  iterative learning control  nonlinear industrial processes  steady state optimization  reachability  convergence
基金项目  工业控制技术国家实验室开放课题基金(K97M02); 西安交通大学科研基金(0900573026)资助项目
作者单位E-mail
阮小娥 西安交通大学 理学院, 西安 710049 wruanxe@xjtu.edu.cn 
万百五 西安交通大学 系统工程研究所, 西安 710049  
高红霞 西安交通大学 系统工程研究所, 西安 710049  
中文摘要
      基于工业过程稳态优化中递阶控制结构和线性工业过程控制系统中的迭代学习控制规律, 本文对饱和非线性工业过程控制系统和变增益非线性工业过程控制系统施行迭代学习控制, 分别给出加权PD 型闭环迭代学习控制算法和加权幂型开闭环迭代学习控制算法, 提出了期望目标轨线的 δ 可达性和迭代学习算法的ε 收敛性的概念. 利用Bellman Gronwall不等式和λ 范数理论, 论证了算法的收敛性. 数字仿真表明, 迭代学习控制能有效改善非线性工业控制系统在稳态优化时的动态品质.
英文摘要
      Based on hierarchical control structure in steady state optimization of industrial processes and iterative learning control law for linear industrial process control systems, the iterative learning control is applied to saturated nonlinear industrial control systems and nonlinear industrial control systems with changing gains, the weighted PD type closed loop iterative learning control algorithm and weighted power type open closed loop iterative learning algorithm are discussed respectively. The definitions of δ reachability of objective trajectory and ε convergence of the iterative learning control algorithm are suggested. By means of Bellman Gronwall inequality and λ norm theory, the convergence of the algorithms is also proved. The numerical simulation shows that the iterative learning control can remarkably improve the dynamic performance of industrial control systems in steady state optimizing.