引用本文:石红端,刘 勇,刘宝坤,李光泉.基于混合递阶遗传算法的径向基神经网络学习算法及其应用[J].控制理论与应用,2002,19(4):627~630.[点击复制]
SHI Hong-rui,LIU Yong,LIU Bao-kun,LI Guang-quan.RBFNN algorithm based on hybrid hierarchy genetic algorithm and its application[J].Control Theory and Technology,2002,19(4):627~630.[点击复制]
基于混合递阶遗传算法的径向基神经网络学习算法及其应用
RBFNN algorithm based on hybrid hierarchy genetic algorithm and its application
摘要点击 1765  全文点击 1707  投稿时间:1999-11-29  修订日期:2001-05-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2002,19(4):627-630
中文关键词  径向基神经网络  混合递阶遗传算法  混沌时间序列
英文关键词  radial basis function neural network  hybrid hierarchy genetic algorithms  Chaos time series
基金项目  
作者单位E-mail
石红端 天津大学 自动化学院, 天津 300072  
刘 勇 天津大学 自动化学院, 天津 300072 liu-yong@eyou.com 
刘宝坤 天津大学 自动化学院, 天津 300072  
李光泉 天津大学 管理学院, 天津300072 gqli@tju.edu.cn 
中文摘要
      在研究径向基神经网络学习算法的基础上, 提出了一种新型的径向基神经网络学习算法———混合递阶遗传算法. 该算法将递阶遗传算法和最小二乘法的优点结合在一起, 能够同时确定径向基神经网络的结构和参数, 并具有较高的学习效率. 采用基于混合递阶遗传算法的径向基神经网络对混沌时间序列学习和预测, 取得了较好的效果.
英文摘要
      Based on the study of RBFNN (radial basis function neural network) training algorithm and genetic algorithm, a new RBFNN training algorithm-hybrid hierarchy genetic algorithm is introduced by combining hierarchy genetic algorithm and least-square method. The hybrid algorithm greatly increases the training speed while is still able to determine the structure and parameters of the RBFNN from sample data. The new training algorithm is used to identify and predict M-G chaos time series, and the simulation gives staisfied result.