引用本文:张仕念, 刘文奇.一种基于粗集理论的动态近似规则挖掘推理方法[J].控制理论与应用,2003,20(1):93~96.[点击复制]
ZHANG Shi-nian, LIU Wen-qi.Dynamics approximate rule mining inference approach based on rough set theory[J].Control Theory and Technology,2003,20(1):93~96.[点击复制]
一种基于粗集理论的动态近似规则挖掘推理方法
Dynamics approximate rule mining inference approach based on rough set theory
摘要点击 1467  全文点击 1125  投稿时间:2000-05-09  修订日期:2001-12-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.1.021
  2003,20(1):93-96
中文关键词  粗集  规则推理  决策表  判别矩阵
英文关键词  rough set  rule inference  decision table  judgment matrix
基金项目  云南教委基金(20033)资助项目
作者单位E-mail
张仕念, 刘文奇 昆明理工大学 系统科学与应用数学系,云南昆明 650093 mecca@km169.net 
中文摘要
      提出一种基于粗集理论的,把属性的重要性和属性值的出现频率综合起来进行规则推理的方法.分析了“激活一个,否则离开”原则的优缺点,指出在近似推理中,大前提中的规则数量应该可变.给出一种根据推理过程中规则的出现频率决定其是否保留,从而实现规则数量的动态变化的方法,证明了动态变化过程中规则的数量不会无限增加.实例表明此法是比较有效的.
英文摘要
      Based on rough set theory, a rule inference approach of integrating the importance of attributes with the emergence frequency of attribute value is proposed. After the analysis of the principle of "fall one or leave", it is pointed out that the number of rules in rule inference would be variable. A method is suggested to decide whether a rule is needed or not by its emergence frequency in the inference process, so the number of the rules is dynamic. The dynamic rule is proved not to increase in the process. The results of examples show the efficiency of the approach.