引用本文:关新平, 唐英平, 段广仁.机械手臂基于神经网络动态补偿的自适应控制[J].控制理论与应用,2003,20(1):101~104.[点击复制]
GUAN Xin-ping, TANG Ying-gan, DUAN Guang-ren.Adaptive control for manipulator based on neural-network dynamic compensation[J].Control Theory and Technology,2003,20(1):101~104.[点击复制]
机械手臂基于神经网络动态补偿的自适应控制
Adaptive control for manipulator based on neural-network dynamic compensation
摘要点击 1650  全文点击 1839  投稿时间:2000-12-25  修订日期:2001-12-20
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.1.023
  2003,20(1):101-104
中文关键词  机械手臂  神经网络  自适应控制
英文关键词  manipulator  neural networks  adaptive control
基金项目  国家自然科学基金(6950400260274023)资助项目
作者单位
关新平, 唐英平, 段广仁 燕山大学 电气工程学院,河北秦皇岛 066004
哈尔滨工业大学 控制工程系,黑龙江哈尔滨 150001 
中文摘要
      研究了模型具有不确定性的机械手臂的跟踪控制问题.由于模型不确定性的存在,基于精确模型设计的控制律很难达到理想的控制效果.针对这种情况,在基于标称模型设计的控制律的基础上,采用神经网络来补偿模型的不确定性,由于神经网络存在逼近误差,因此在控制器设计时,引入了H 鲁棒项,使得网络逼近误差达到指定的削弱水平并且跟踪误差渐近收敛到零,仿真结果表明了该方法的有效性.
英文摘要
      The tracking control of manipulator with model uncertainties and external disturbance is studied. Due to the uncertainties, the controller design based on exact model is difficult to achieve. Thus a neural network is introduced to compensate the uncertainties based on the controller with exact model.Considering the existence of approximation error of the neural network, the H-infinity robust controller is introduced to reduce the approximation error to a prescribed level and the tracking error tends to zero. The effectiveness of this approach is demonstrated by the simulation examples.