引用本文:杨富文.具有状态和测量时滞不确定系统的鲁棒H状态估计(英文)[J].控制理论与应用,2003,20(2):211~216.[点击复制]
YANG Fu-wen.Robust H-infinity state estimation for linear state-delayed and measurement-delayed systems with uncertainties[J].Control Theory and Technology,2003,20(2):211~216.[点击复制]
具有状态和测量时滞不确定系统的鲁棒H状态估计(英文)
Robust H-infinity state estimation for linear state-delayed and measurement-delayed systems with uncertainties
摘要点击 1801  全文点击 840  投稿时间:2001-09-30  修订日期:2002-05-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.2.009
  2003,20(2):211-216
中文关键词  鲁棒H状态估计  时滞  不确定系统  代数Riccati不等式
英文关键词  robust H-infinity state estimation  time delay  uncertain system  algebraic Riccati inequality
基金项目  
作者单位E-mail
杨富文 福州大学 电气工程系, 福建福州 350002 fwyang@fzu.edu.cn 
中文摘要
      考虑一类已知状态和测量时滞且范数有界参数不确定连续时间系统的鲁棒H状态估计问题. 这个问题解的充分条件由二个代数Riccati不等式给出, 它可以保证存在一个渐近稳定状态估计器使得对于所有不确定性从外界干扰到输出估计误差的传递函数满足指定的H指标. 以上这些结果可以推广到一类未知状态和测量时滞且范数有界参数不确定连续系统的鲁棒H状态估计问题, 对于已知状态和测量时滞系统, 所得状态估计器与参数不确定性无关, 而与时滞有关. 对于未知状态和测量时滞系统, 其状态估计器不仅与参数不确定性无关, 而且与时滞也无关.
英文摘要
      The problem of robust H ∞ state estimation for a class of continuous time systems with known state delay and measurement delay as well as with norm bounded parameter uncertainties is concerned with. Sufficient conditions for the solutions of this problem are presented to ensure that there exists the asymptotically stable state estimator such that the transfer function from exogenous disturbance to output estimation error satisfies the prescribed H ∞ performance for all admissible perturbations in terms of two algebraic Riccati inequalities. The results extend to the case of the problem of robust H ∞ state estimation for a class of continuous-time systems with unknown state delay and measurement delay as well as with norm-bounded parameter uncertainties. For known state delay and measurement delay systems, the state estimator derived does not depend on parameter uncertainties, but depend on time delays, and for unknown state delay and measurement delay systems, the state estimator depends on neither parameter uncertainties nor time delays.