引用本文:韩武鹏, 陈文楷, 刘正耀.纺织品检测中的模式识别应用[J].控制理论与应用,2003,20(3):391~393.[点击复制]
HAN Wu-peng, CHEN Wen-kai, LIU Zheng-yao.A way of pattern recognition for identification in textile[J].Control Theory and Technology,2003,20(3):391~393.[点击复制]
纺织品检测中的模式识别应用
A way of pattern recognition for identification in textile
摘要点击 1769  全文点击 1564  投稿时间:2001-04-25  修订日期:2002-05-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2003,20(3):391-393
中文关键词  模糊算法  小波变换  特征提取  瑕点识别
英文关键词  fuzzy algorithm  wavelet transform  feature extraction  defect identification
基金项目  
作者单位E-mail
韩武鹏, 陈文楷, 刘正耀 北京工业大学 电子信息与控制工程学院, 北京 100022
中国纺织研究院, 北京 100025 
cwk@bjpu.edu.cn或wen_kai_chen@hotmail.com 
中文摘要
      将模式识别方法用于毛巾和纺织面料生产过程中的瑕点检测, 研究了模糊小波模式识别方法, 对毛巾生产过程的多种瑕点监测进行了算法分析和简要论述, 这种算法具有更强的实用性和鲁棒性. 又由于系统采用DSP实现, 使识别速度大大提高, 完全能满足实时性的要求.
英文摘要
      An effective method of pattern recognition is introduced. It is used in towel and textile fabric making process. For the multi-feature extraction using the fuzzy wavelets intelligent arithmetic and making FWA analysis, it combines fuzzy tools and wavelet transform techniques for providing a robust feature extraction and failure detection and identification scheme. The input signal first undergoes preprocessing and then the features are extracted using the wavelet transform. The extracted features are fuzzified and an inference engine uses the knowledeg-base to declare fault conditions. The fuzzification process adapts dynamically to external disturbances so that the classification performance is continuously improved. The architecture can be used in practical field for feature extraction and defect identification in textile fabric. The detection speed is quickened and real-time operation is satisfied.