引用本文:杨小军,李俊民.一类非线性系统基于Backstepping的自适应鲁棒神经网络控制[J].控制理论与应用,2003,20(4):589~592.[点击复制]
YANG Xiao-jun,LI Jun-min.Adaptive robust neural network control for a class of nonlinear systems using backstepping[J].Control Theory and Technology,2003,20(4):589~592.[点击复制]
一类非线性系统基于Backstepping的自适应鲁棒神经网络控制
Adaptive robust neural network control for a class of nonlinear systems using backstepping
摘要点击 1784  全文点击 1233  投稿时间:2001-02-26  修订日期:2002-07-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.4.023
  2003,20(4):589-592
中文关键词  非线性自适应控制  backstepping  神经网络  自适应界化
英文关键词  nonlinear adaptive control  backstepping  neural network  adaptive bounding
基金项目  
作者单位E-mail
杨小军 西北工业大学 自动控制系应用数学系, 陕西 西安 710072 yang_npu@sohu.com 
李俊民 西安电子科技大学 应用数学系, 陕西 西安 710071  
中文摘要
      针对一类未知非线性系统提出了一种基于Backstepping的自适应神经网络控制方法, 放松了满足匹配条件, 要求神经网络逼近误差的边界已知等一些限制性的假设. 扩展了自适应backstepping和自适应神经控制的适用范围, 整个闭环系统表明是最终一致有界的, 跟踪误差收敛于原点的一个大小可调的邻域.
英文摘要
      The adaptive neural control scheme was formulated for a class of unknown nonlinear systems based on backstep-ping technique. The proposed scheme relaxed the requirements of matching condition and of a known bound on the network reconstruction. The method expands the applicable scope of the class of nonlinear systems, which can successfully utilize the backestepping algorithm and adaptive NN control .The resulting closed-loop system is proven to be ultimately uniform bounded, and the output tracking error converges to an adjustable neighborhood of zero.