引用本文:陈彦桥,王印松,刘吉臻,曾德良.基于PID型模糊神经网络的火电站汽包压力控制[J].控制理论与应用,2003,20(4):627~629.[点击复制]
CHEN Yan-qiao,WANG Yin-song,LIU Ji-zhen,ZENG De-liang.Drum pressure control based on PID-type fuzzy neural network in fossil-fired electric power station[J].Control Theory and Technology,2003,20(4):627~629.[点击复制]
基于PID型模糊神经网络的火电站汽包压力控制
Drum pressure control based on PID-type fuzzy neural network in fossil-fired electric power station
摘要点击 1712  全文点击 1157  投稿时间:2001-06-23  修订日期:2002-06-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2003,20(4):627-629
中文关键词  汽包压力  PID型模糊神经网络  自学习  时变性
英文关键词  drum pressure  PID-type fuzzy neural networks  self-learning  time-variable
基金项目  国家电力公司重大科技项目(SP11-2001-02036)资助项目.
作者单位E-mail
陈彦桥 华北电力大学 动力工程系, 河北 保定 071003 cyq@ncepu.edu.cn 
王印松 华北电力大学 动力工程系, 河北 保定 071003  
刘吉臻 华北电力大学 动力工程系, 河北 保定 071003  
曾德良 华北电力大学 动力工程系, 河北 保定 071003  
中文摘要
      为克服火电站燃料-汽包压力调节对象的非线性、时变和纯迟延特性, 采用含自回归神经元的PID型模糊神经网络作为汽包压力控制器, 进行协调控制系统的设计. 仿真研究表明, 这种初值易选、学习能力较强的模糊神经网络控制器可以克服该对象的时变性和随机性干扰, 大大改善控制品质.
英文摘要
      In order to overcome the nonlinearization, time-variability and pure lag of fuel-drum pressure control loop in the power station, a PID-type fuzzy neural network with a self-regress nerve cell was proposed as the drum pressure controller in the coordinate control system. The simulation research shows that the time-variability and random disturbance can be overcome by the controller, which is easy to select the initial value and capable of self-learning and thus considerably improves control quality.