引用本文:刘智勇, 李水友,李水友.城市交通信号的ANN自校正预测控制[J].控制理论与应用,2003,20(6):933~937.[点击复制]
LIU Zhi-yong, LI Shui-you,LI Shui-you.Artificial neural networks self-tuning predictive control for traffic signals[J].Control Theory and Technology,2003,20(6):933~937.[点击复制]
城市交通信号的ANN自校正预测控制
Artificial neural networks self-tuning predictive control for traffic signals
摘要点击 1928  全文点击 1977  投稿时间:2001-01-18  修订日期:2002-10-22
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.6.023
  2003,20(6):933-937
中文关键词  智能交通控制  自校正预测控制  人工神经网络  建模  最优化
英文关键词  traffic signal control  self-tuning predictive control  artificial neural networks  modeling  optimization
基金项目  教育部高等学校骨干教师资助计划项目(教技司[2000]65号); 广东省自然科学基金项目(010486).
作者单位E-mail
刘智勇, 李水友 五邑大学 304信箱,广东 江门 529020 zliu@wyu.edu.cn 
李水友 五邑大学 304信箱,广东 江门 529021  
中文摘要
      提出一种基于人工神经网络的城市交通信号的自校正预测控制方法.充分考虑相邻交叉路口之间交通流的强耦合性,在此基础上建立关于队长的交通模型;其中,受控路口下一周期到达的车辆数用人工神经网络(ANN)来预测;通过该ANN还可获得确定最佳周期长度所需要的交通参量,因此还可预测下一周期的长度;上述预测值均用实测信息进行反馈校正,在此基础上即可给出带约束的预测控制算法,从而确定下一周期的控制策略.仿真实例表明该方法具有较好的控制效果.
英文摘要
       A self-tuning predictive control method for traffic signals in urban area based on artificial neural networks (ANN) was proposed. The strong coupling between adjacent signaled intersections was fully considered, based on which a traffic model for queues was established. The number of approaching vehicles in the next cycle at this intersection was predicted by using ANN and the traffic parameters were obtained to decide the optimal cycle length. The feedback tuning method was used to process all the above prediction values by using real measured data. The constrained predictive control algorithm was given to determine the control tactics. Simulation results showed that the proposed method is effective.