引用本文:徐新黎, 王万良, 吴启迪.改进计算能量函数下作业车间调度的混沌神经网络方法[J].控制理论与应用,2004,21(2):311~314.[点击复制]
XU Xin-li, WANG Wan-Hang, WU Qi-di.Chaotic neural network method for job-shop scheduling problems based on improved computational energy function[J].Control Theory and Technology,2004,21(2):311~314.[点击复制]
改进计算能量函数下作业车间调度的混沌神经网络方法
Chaotic neural network method for job-shop scheduling problems based on improved computational energy function
摘要点击 1561  全文点击 1253  投稿时间:2002-03-11  修订日期:2003-07-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2004,21(2):311-314
中文关键词  作业车间调度问题  混沌  神经网络  计算能量函数
英文关键词  job-shop scheduling problems  chaos  neural networks  computational energy function
基金项目  国家自然科学基金项目(60374056); 国家863计划项目(2002AA412610); 浙江省科技计划项目(012047).
作者单位
徐新黎, 王万良, 吴启迪 浙江工业大学 信息工程学院,浙江 杭州 310014
上海同济大学 电子与信息工程学院,上海 200092 
中文摘要
      神经网络是求解作业车间调度问题的一种有效方法,本文研究可以获得全局最优或近似全局最优的可行解的作业车问调度神经网络方法.给出包括作业车间调度所有约束条件的新的计算能量函数表达式,并把混沌动力学应用于离散Hopfield神经网络作业车间调度中,提出一种改进的暂态混沌离散神经网络作业车间调度方法.仿真结果表明,该方法不仅具有全局搜索能力,而且收敛速度较快,重要的是能够保证神经网络的稳态输出为全局最优或近似全局最优的可行的作业车间调度方案.
英文摘要
      Neural network is an effective approach to solving job-shop scheduling problem (JSP). The paper studies the neural network method for JSP in order to obtain the global optimal solution or a feasible solution close to the optimal one. A new expression is given for the computational energy function with all constraints imposed on JSP. Moreover, applying chaos to a discrete Hopfield neural network for JSP, an improved instantaneous method of the chaotic neural network for JSP is proposed. The simulation results show that the method not only has the ability of searching for the global minimum, but also has a rather fast convergence rate. More importantly, the method guarantees the steady output of the neural network to be a feasible solution to JSP, which either itself is the global optimum or is close to the global optimum.