引用本文: | 王振滨, 曹广益, 朱新坚.分数阶系统状态空间描述的数值算法[J].控制理论与应用,2005,22(1):101~105.[点击复制] |
WANG Zhen-bin, CAO Guang-yi, ZHU Xin-jian.A numerical algorithm for the state-space representation of fractional order systems[J].Control Theory and Technology,2005,22(1):101~105.[点击复制] |
|
分数阶系统状态空间描述的数值算法 |
A numerical algorithm for the state-space representation of fractional order systems |
摘要点击 1675 全文点击 1344 投稿时间:2003-07-18 修订日期:2003-12-15 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2005,22(1):101-105 |
中文关键词 分数微积分 分数阶系统 分数阶线性多步长方法 状态空间描述 |
英文关键词 fractional calculus fractional systems fractional linear multi-step methods state-space representation |
基金项目 863基金资助项目(2002AA517020); 上海市科技发展基金资助项目(011607033). |
|
中文摘要 |
利用Grünwald-Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法不但公式简单易编程,而且具有计算精度高、运算速度快等优点.给出一个粘弹性动态系统的仿真实例,验证了其有效性. |
英文摘要 |
The computational precision is only of first order by using Grünwald-Letnicov fractional calculus definition to approximate fractional differentials/integrals,and thus it can not satisfy the high convergence demand.The high order approximate conditions for fractional differentials/integrals are given and verified,and based on that the numerical formula of the state space representation of linear time-invariant fractional order systems is deduced.This algorithm has not only a simple form,which is easy to program,but also the advantage of a high precision and fast computation time.An example of solving numerically the dynamic viscoelasticity system is given to show the effectiveness of the method aforementioned. |
|
|
|
|
|