引用本文:庞素琳, 黎荣舟, 徐建闽.BP算法在信用风险分析中的应用[J].控制理论与应用,2005,22(1):139~143.[点击复制]
PANG Su-lin, LI Rong-zhou, XU Jian-min.Application of BP algorithm in credit risk analysis[J].Control Theory and Technology,2005,22(1):139~143.[点击复制]
BP算法在信用风险分析中的应用
Application of BP algorithm in credit risk analysis
摘要点击 1540  全文点击 2064  投稿时间:2003-05-29  修订日期:2004-04-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2005.1.028
  2005,22(1):139-143
中文关键词  BP算法  信用风险评价模型  信用风险分析
英文关键词  BP algorithm  credit risk evaluation model  credit risk analysis
基金项目  广东省自然科学基金资助项目(31906); 广州市科技局科技攻关项目(2004Z3-D0231); 广东省科技厅科技攻关项目(2004B10101033).
作者单位
庞素琳, 黎荣舟, 徐建闽 暨南大学 数学系,广东 广州 510632
华南理工大学 交通学院,广东 广州 510640
上海浦东发展银行 广州分行,广东 广州 510075 
中文摘要
      建立了基于BP算法的神经网络信用风险评价模型,用来对我国某国有商业银行2001年80家贷款企业进行两类模式分类.按照企业的财务状况、经营状况以及过往的信用记录分为"信用好"和"信用差"两个小组.对于每一家贷款企业,主要考虑能反映该企业的还款能力、盈利能力、经营效率和资本结构等7个财务比率作为分析变量.对该BP网络分别训练100次、390次和800次.仿真结果表明,当训练800次时,网络达到一定的稳定状态,目标函数值达到最优,分类准确率达到98.75%.此外,还给出了该BP网络的学习算法和步骤.
英文摘要
      A credit-risk evaluation model is established,which is based on back-propagation (BP) algorithm.The model has been applied to evaluate the credits of 80 applicants in a commercial bank of our country in 2001.These data are separated into two groups:a "good credit" group and a "bad credit" group according to their finance,management and previous credit records.As to each applicant,seven financial rates are considered that can reflect its debt paying ability,profitability,quality of management and capital structure. The BP network is trained 100,390 and 800 times respectively.The simulations show that,when the network is trained 800 times,it enters steady state and the performance function reaches optimal value,and the classification accuracy rate is 98.75%.In addition,a learning algorithm and steps of the BP network are presented as well.