引用本文:钟伟民, 皮道映, 孙优贤.基于支持向量机的直接逆模型辨识[J].控制理论与应用,2005,22(2):307~310.[点击复制]
ZHONG Wei-min, PI Dao-ying, SUN You-xian.Support vector machine based direct inverse-model identification[J].Control Theory and Technology,2005,22(2):307~310.[点击复制]
基于支持向量机的直接逆模型辨识
Support vector machine based direct inverse-model identification
摘要点击 1871  全文点击 2631  投稿时间:2003-06-24  修订日期:2004-05-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2005.2.027
  2005,22(2):307-310
中文关键词  逆模型  支持向量机(SVM)  BP神经网络  建模与辨识
英文关键词  inverse-model  support vector machine(SVM)  BP neural network  modeling and identification
基金项目  国家973项目资助(2002CB312200).
作者单位
钟伟民, 皮道映, 孙优贤 浙江大学 工业控制技术国家重点实验室现代控制工程研究所,浙江 杭州 310027 
中文摘要
      在简单讨论逆模型辨识原理的基础上,利用支持向量机(SVM)对函数逼近的能力,提出了基于支持向量机的直接逆模型辨识方法.分别采用二次核函数以及高斯RBF核函数,利用训练数据对线性和非线性系统进行黑箱辨识.仿真结果表明,基于支持向量机的直接逆模型辨识方法在处理线性和非线性对象时,辨识性能都优于传统的BP神经网络,不仅辨识精度高,辨识速度快,而且泛化能力较强.
英文摘要
      After a simple discussion of the principle of the inverse_model identification,a support vector machines(SVM) based direct inverse-model identification method is developed by using SVM's excellent ability of function approximation.According to the train data,linear and nonlinear systems' black-box identification is performed by using SVM with quadric polynomial and Gaussian RBF kernel respectively.Simulation results show that the performance of SVM based direct inverse-model is better than that of BP neural network in that it has better identification precision,quicker identification speed and stronger generalization ability.