引用本文:吴淮宁, 李 勇, 蔡开元.基于重要抽样法和神经网络的模糊鲁棒性分析[J].控制理论与应用,2005,22(2):335~340.[点击复制]
WU Huai-ning, LI Yong, CAI Kai-yuan.Fuzzy robustness analysis based on importance sampling and neural network[J].Control Theory and Technology,2005,22(2):335~340.[点击复制]
基于重要抽样法和神经网络的模糊鲁棒性分析
Fuzzy robustness analysis based on importance sampling and neural network
摘要点击 1688  全文点击 1734  投稿时间:2003-10-21  修订日期:2004-04-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2005.2.033
  2005,22(2):335-340
中文关键词  不确定控制系统  鲁棒性分析  模糊方法  神经网络  重要抽样  MonteCarlo仿真
英文关键词  uncertain control systems  robustness analysis  fuzzy approach  neural network(NN)  importance sampling  Monte Carlo simulation
基金项目  国家自然科学(青年)基金资助项目(60204011); 国家自然科学基金资助项目(60274057).
作者单位
吴淮宁, 李 勇, 蔡开元 北京航空航天大学 自动化科学与电气工程学院,北京 100083 
中文摘要
      将重要抽样(IS)法与神经网络(NN)用于不确定控制系统的模糊鲁棒性分析中.IS法被用于提高当模糊不可接受性能的概率很小时的抽样效率,而NN被用于预测每次仿真试验中所需计算时间较长的性能指标值.所建议方法降低了标准MonteCarlo仿真(MCS)方法在处理模糊鲁棒性分析中小概率事件以及性能指标计算时间较长所带来的过高计算成本.最后,仿真结果验证了方法的有效性.
英文摘要
      This paper applies the importance sampling (IS) method and neural network (NN) to the fuzzy robustness analysis of uncertain control systems.The IS method is utilized to improve the sampling efficiency when the probability of fuzzy unacceptable performance is very small.The NN is used to predict the performance index requiring more computational time in each simulation experiment.The proposed approach can reduce the excessive computational cost generated from the standard Monte Carlo simulation (MCS) for dealing with the rare event case and the performance index requiring more computational time in the fuzzy robustness analysis.Finally,a numerical example is provided to demonstrate the effectiveness of the proposed method.