引用本文: | 罗可,童小娇 .求解最优潮流KKT系统的一类新模型及算法设计[J].控制理论与应用,2006,23(2):245~250.[点击复制] |
LUO Ke,TONG Xiao-jiao.New model and algorithm for solving the KKT system of optimal power flow[J].Control Theory and Technology,2006,23(2):245~250.[点击复制] |
|
求解最优潮流KKT系统的一类新模型及算法设计 |
New model and algorithm for solving the KKT system of optimal power flow |
摘要点击 2087 全文点击 1069 投稿时间:2004-10-26 修订日期:2005-07-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2006.2.016 |
2006,23(2):245-250 |
中文关键词 最优潮流 KKT系统 非线性互补函数 投影Newton法 |
英文关键词 optimal power flow KKT system nonlinear complementarity function projection Newton method |
基金项目 国家自然科学基金资助项目(60474070,1071036);湖南省自然科学基金资助项目(05JJ2002,04JJ3031);湖南省科技厅基金资助项目(05FJ3074);湖南省教育厅基金资助项目(04C133) |
|
中文摘要 |
电力工业的市场化改革对最优潮流(optimal power flow,OPF)的计算精度和速度提出了更高的要求.本文针对OPF模型中存在大量的无功界约束的特性,把一般非线性不等式约束和界约束分开处理,通过引入一个对角矩阵和非线性互补函数,建立了与OPF问题的Karush-Kuhn-Tucker(KKT)系统等价的约束非光滑方程新模型.进一步,基于新建立的模型,提出了一类具有理论上收敛性保证的投影半光滑Newton型算法.相对于传统的解OPF的KKT系统和非线性互补函数方法,新方法一方面保持了非线性互补函数法无需识别有效集的优点,同时又减少了问题的维数,且投影计算保持了无功界约束的可行性.IEEE多个算例的数值试验显示本文所提出的模型和算法具有较好的计算效果. |
英文摘要 |
The market revolution of the power industry presents higher requirement for the computing precision and speed of optimal power flowOPF.Considering that there exist plentiful boundary constraints of reactive power in OPF problems,the general inequality constraints and the boundary constraints are treated separately.Then,by introducing a diagonal matrix and the nonlinear complementarity function,the Karush-Kuhn-Tucker(KKT) system of OPF is transformed equivalently to non-smooth constrained equations.Moreover,based on the new model,a projected semi-smooth Newton algorithm is presented,which has convergent guarantee in theory.Compared with the traditional nonlinear system of KKT system of OPF and the method of nonlinear complementarity function,the new method not only keeps the advantage that it need not identify active set,but also reduces the dimension of the problem.Furthermore, the proposed approach retains the feasible property of boundary constraints for reactive power.Numerical examples of some standard tested IEEE systems show that the new model and algorithm have better effect of computation. |
|
|
|
|
|