引用本文:王俊年,申群太,沈洪远,周鲜成 .基于多种群协同进化微粒群算法的径向基神经网络设计[J].控制理论与应用,2006,23(2):251~255.[点击复制]
WANG Jun-nian,SHEN Qun-tai,SHEN Hong-yuan,ZHOU Xian-cheng.Evolutionary design of RBF neural network based on multi-species cooperative particle swarm optimizer[J].Control Theory and Technology,2006,23(2):251~255.[点击复制]
基于多种群协同进化微粒群算法的径向基神经网络设计
Evolutionary design of RBF neural network based on multi-species cooperative particle swarm optimizer
摘要点击 1664  全文点击 1177  投稿时间:2004-11-03  修订日期:2005-07-27
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.2.017
  2006,23(2):251-255
中文关键词  微粒群算法  多种群协同进化  径向基神经网络  结构优化
英文关键词  particle swarm optimization  multi-species cooperative  RBF neural network  structure optimization
基金项目  国家自然科学基金资助项目(50274060); 湖南省教育厅科研资助项目(03C499); 湖南省杰出青年基金资助项目(02JJYB009)
作者单位
王俊年,申群太,沈洪远,周鲜成 中南大学信息科学与工程学院,湖南长沙410083
湖南科技大学信息与电气工程学院,湖南湘潭411201 
中文摘要
      神经网络结构和权值的联合设计一直是神经网络进化设计的一个研究方向.本文根据基本微粒群算法的特点,借鉴递阶编码的思想,构造出一种多种群协同进化微粒群算法.该算法具有种群内个体微粒自由运动特征分量与种群运动特征分量分层递阶进化的特征,克服了标准微粒群算法在多峰函数寻优时出现的微粒“早熟”现象.应用该算法进行径向基神经网络隐层结构和径向基函数参数联合自适应设计,在非线性系统辨识中显示了比较好的收敛性和训练精度,同时也使网络的泛化能力和逼近精度这一对矛盾得到了比较好的协调统一.
英文摘要
      Combination design of neural network's structure and weights has been one of the research focuses in neural network's evolutionary design.In this paper,a multi-species cooperative particle swarm optimizer is proposed by combining the ideas in the standard particle swarm optimization and hierarchy method.In the new algorithm,the individual free movement of particles within the species and the species population's movement evolve in a hierarchy model.The developed algorithm overcomes the limitation of particle's "prematurity" in global optimization using the standard PSO.When this algorithm is used in the training of RBF neural network's structure and parameters,the neural network shows a satisfactory accuracy and convergence in nonlinear system identification.The resulting network is able to properly balance the relation between generation and approximation accuracy.