引用本文: | 王林,戴冠中.无标度网络度秩指数的变化范围[J].控制理论与应用,2006,23(4):503~507.[点击复制] |
WANG Lin, DAI Guan-zhong .Range of degree-rank exponent of scale-free networks[J].Control Theory and Technology,2006,23(4):503~507.[点击复制] |
|
无标度网络度秩指数的变化范围 |
Range of degree-rank exponent of scale-free networks |
摘要点击 2264 全文点击 766 投稿时间:2004-10-26 修订日期:2005-10-09 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2006.4.002 |
2006,23(4):503-507 |
中文关键词 复杂网络 无标度网络 度分布 度秩指数 网络结构熵 |
英文关键词 complex network scale-free network degree distribution degree-rank exponent network structural entropy |
基金项目 |
|
中文摘要 |
实证研究表明,绝大多数复杂网络的结点的度分布服从幂律分布,该幂律分布的幂指数的绝对值(度分布指数)介于2和3之间.然而,至今尚未发现为什么度分布指数介于2和3之间的研究结果.本文证明了度分布指数大于2,从而部分回答了上述问题.为此,本文引进度秩指数,并给出了度秩指数和度分布指数之间的关系.通过对度秩指数与网络结构熵之间的关系的刻画,发现了度秩指数与网络结构熵以及网络规模之间的函数依赖关系,从而最终证明了度秩指数的临界值趋于1,并给出了仿真结果. |
英文摘要 |
Empirical study shows that most of complex networks are scale-free, and the node degrees of which obey the power-law distribution with the absolute value of the corresponding power exponent (known as degree distribution exponent) lying between 2 and 3. However, there is no research result on why the degree distribution exponent lies between 2 and 3 so far. The authors prove that the degree distribution exponent is greater than 2 and thus partially solve the problem mentioned above. First, the degree-rank exponent is introduced, the relation between the degree-rank exponent and the degree distribution exponent is also given. Through the characterization on the relation between the degree-rank exponent and the network structural entropy, functional dependent relations among the degree-rank exponent, the network structural entropy and the number of nodes of the network are then obtained and the result that the degree-rank exponent approaches one is proved. Finally, simulation results are given to illustrate the theoretical result. |
|
|
|
|
|