引用本文:原菊梅,侯朝桢,王小艺,吴勤.复杂系统可靠性估计的模糊神经Petri网方法[J].控制理论与应用,2006,23(5):687~691.[点击复制]
YUAN Ju-mei, HOU Chao-zhen, WANG Xiao-yi, WU Qin .Fuzzy neural Petri-net method for reliability estimation of complex systems[J].Control Theory and Technology,2006,23(5):687~691.[点击复制]
复杂系统可靠性估计的模糊神经Petri网方法
Fuzzy neural Petri-net method for reliability estimation of complex systems
摘要点击 1699  全文点击 823  投稿时间:2005-04-27  修订日期:2005-11-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2006,23(5):687-691
中文关键词  模糊神经Petri网  复杂系统  可靠性估计
英文关键词  fuzzy neural Petri net  complex system  reliability estimate
基金项目  国防基础研究基金资助项目.
作者单位
原菊梅,侯朝桢,王小艺,吴勤 中北大学分校,山西太原030008
北京理工大学信息科学技术学院,北京100081 
中文摘要
      针对复杂系统可靠性建模难问题,提出了一种新的适用于复杂系统可靠性估计的模糊神经Petri网(简称为FNPN).文中首先给出了模糊神经Petri网的定义及其引发规则,然后给出了一种学习算法.该FNPN结合了模糊Petri网和神经网络各自的优点,既可以表示和处理模糊产生式规则的知识库系统又具有学习能力,可通过对样本数据学习调整模型中的参数以获得系统内部的等效结构,从而计算出非样本数据的系统的可靠度.最后以一无向网络为例说明该方法是可行的.
英文摘要
      A Fuzzy neural Petri-net method (FNPN) for estimating the reliability of complex systems is proposed. The definition and fire-rules of this FNPN are presented. A learning algorithm is put forward. This FNPN combines the advantages of fuzzy Petri-net and neural network. It can express and process the knowledge-based system of fuzzy productive rules, and posseses the capability of learning. The structure and parameters of the system can be determined by learning the sample data. An example of non-directional network is used to demonstrate the feasibility of this method.