引用本文:张艳, 李少远, 王笑波, 周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991~995.[点击复制]
ZHANG Yan, LI Shao-yuan, WANG Xiao-bo, ZHOU Jian-gang.Particle swarm optimal identification ofWiener model and a case study[J].Control Theory and Technology,2006,23(6):991~995.[点击复制]
基于粒子群优化的Wiener模型辨识与实例研究
Particle swarm optimal identification ofWiener model and a case study
摘要点击 1666  全文点击 1255  投稿时间:2004-10-13  修订日期:2005-12-27
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.6.028
  2006,23(6):991-995
中文关键词  Wiener模型  粒子群优化  模型辨识  参数估计  收敛特性
英文关键词  Wiener model  particle swarm optimization (PSO)  model identification  parameter estimation  convergent performance
基金项目  国家自然科学基金资助项目(60474051, 60534020); 国家教育部新世纪优秀人才计划和高等学校博士学科点专项科研基金资助项目(20020248028).
作者单位
张艳, 李少远, 王笑波, 周坚刚 上海交通大学自动化系, 上海200240
宝钢技术中心自动化研究所, 上海201900 
中文摘要
      针对一类工业过程中可描述成Wiener模型的非线性系统, 其辨识问题可等价成以估计参数为优化变量的非线性极小值优化问题. 利用粒子群优化(PSO)算法在整个参数空间内并行搜索获得极小值优化问题的最优解(Wiener模型的最优估计), 通过对粒子的迭代轨迹进行分析, 改进了PSO算法中惯性权重和学习因子的选择. 通过一个Wiener模型的数值仿真验证了本文提出的辨识方法的有效性和实用性, 并将该方法应用在连续退火机组加热炉产品质量模型的辨识研究, 取得了满意的辨识效果.
英文摘要
      For a class of nonlinear systems described by Wiener model, the model identification problem is equivalent to the nonlinear minimization problem with the estimated parameters as the optimized variables subjected to some equality and inequality constraints. The particle swarm optimization (PSO) algorithm is used to obtain the optimal solution to the minimization problem (i.e. the optimal estimation of Wiener model parameters) by searching in the whole parameter space in parallel. The inertia weight and learning gains in PSO algorithm are then modified through analyzing particle trajectory. A numerical simulation of a Wiener model is also provided to verify the effectiveness when applying the proposed identification scheme. Finally, PSO based identification method is applied to the quality model for a continuous annealing furnace, achieving some satisfactory identification results.