引用本文:邓自立,李春波.自校正信息融合Kalman平滑器[J].控制理论与应用,2007,24(2):236~242.[点击复制]
Deng Zi-li, LI Chun-bo.Self-tuning information fusion Kalmansmoother[J].Control Theory and Technology,2007,24(2):236~242.[点击复制]
自校正信息融合Kalman平滑器
Self-tuning information fusion Kalmansmoother
摘要点击 1903  全文点击 901  投稿时间:2005-10-13  修订日期:2006-04-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2007.2.013
  2007,24(2):236-242
中文关键词  多传感器信息融合  加权融合  MA新息模型  系统辨识  噪声方差估计  自校正Kalman平滑器
英文关键词  multisensor information fusion  weighted fusion  MA innovation model  system identification  noise variance estimation  ~self-tuning Kalman smoother
基金项目  国家自然科学基金资助项目(60374026);黑龙江大学自动控制重点实验室基金资助项目(F04--01).
作者单位
邓自立,李春波 黑龙江大学~自动化系, 黑龙江 哈尔滨 150080 
中文摘要
      对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,得到了噪声统计的在线估值器,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman平滑器.提出了一种按实现收敛性新概念,证明了自校正Kalman融合器按实现收敛于最优Kalman融合器,因而它具有渐近最优性.~同单传感器自校正Kalman平滑器相比,~它可提高平滑精度.一个目标跟踪系统的仿真例子说明了其有效性.
英文摘要
      For the multisensor systems with unknown noise statistics, using the modern time series analysis method, based on the on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for correlation function, the on-line estimators of noise statistics are obtained. Furthermore, under the linear minimum variance optimal information fusion criterion weighted by matrices, a self-tuning information fusion Kalman smoother is presented. A new concept of the convergence in a realization is presented, and it is proved that the self-tuning Kalman fuser converges to the optimal Kalman fuser in a realization, so that it has the asymptotic optimality. Compared with the single-sensor self-tuning Kalman smoother, its accuracy is improved. A simulation example for a target tracking system shows its effectiveness.