引用本文: | 蒋刚.基于模糊支持向量核回归方法的短期峰值负荷预测[J].控制理论与应用,2007,24(6):986~990.[点击复制] |
JIANG Gang .Short-term peak load forecasting based on fuzzy support vector kernel regression method[J].Control Theory and Technology,2007,24(6):986~990.[点击复制] |
|
基于模糊支持向量核回归方法的短期峰值负荷预测 |
Short-term peak load forecasting based on fuzzy support vector kernel regression method |
摘要点击 1577 全文点击 946 投稿时间:2005-11-27 修订日期:2006-11-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2007.6.024 |
2007,24(6):986-990 |
中文关键词 电力系统 负荷预测 模糊逻辑 支持向量机 核函数 |
英文关键词 power system load forcasting fuzzy logic support vector machine kernel function |
基金项目 国家自然科学基金资助项目(10576027) |
|
中文摘要 |
分析了电力系统负荷预测目前采用的方法的不足; 在已有研究成果的基础上, 根据电网负荷的特点进一步完善了基于模糊支持向量的核回归方法; 与目前已有的方法, 如神经网络、卡尔曼滤波、最小绝对值参数估计、结合遗传算法的支持向量机、结合模糊小波技术的支持向量机等进行对比实验, 实验结果展示了几种方法的性能对比, 为该领域的研究提供了参考. |
英文摘要 |
In view of the disadvantages of current methods for load forecasting in power system, a new algorithm named fuzzy support vector kernel regression method (F-SVKR) is proposed to deal with the problem. Comparison with some conventional methods, such as the artificial neural network, Kalman filtering algorithm, the method of minimizing absolute parameter estimation, the support vector machine and so on, have been performed. Expertmental results show their performance differences and provide some reference information for the further research in this domain. |