引用本文:郭红霞, 杨金明, 刘文刚.无刷双馈电机的PID神经网络控制[J].控制理论与应用,2008,25(1):53~56.[点击复制]
GUO Hong-xia, YANG Jin-ming, LIU Wen-gang.PID neural network control of brushless doubly-fed machine[J].Control Theory and Technology,2008,25(1):53~56.[点击复制]
无刷双馈电机的PID神经网络控制
PID neural network control of brushless doubly-fed machine
摘要点击 3008  全文点击 2261  投稿时间:2007-09-11  修订日期:2007-09-30
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.1.009
  2008,25(1):53-56
中文关键词  无刷双馈电机  PID神经网络控制  转速控制
英文关键词  brushless doubly-fed machine  PID neural network control  speed control
基金项目  国家自然科学基金重点资助项目(60534040).
作者单位
郭红霞, 杨金明, 刘文刚 华南理工大学电力学院, 广东广州510640 
中文摘要
      无刷双馈电机(BDFM)兼有笼型、绕线型感应电机和电励磁同步电机的共同优点, 在电气传动和风力发电中具有很好的应用前景. 由于无刷双馈电机两套绕组形成的复杂空间耦合关系, 使得基于模型的控制方法异常复杂, 为此设计了一种PID神经网络(PIDNN)的无刷双馈电机的控制方法, 经过训练的PID神经网络控制器能够实现准确的转速跟踪, 且有较好的动态特性, 仿真结果验证了这种控制方法的有效性.
英文摘要
      Brushless doubly-fed machine (BFDM) possesses the common advantages of squirrel-cage induction machine, wire wound induction machine and electromagenetic synchoronous machine. Therefore, it has a good prospect for application in AC drive and wind generating. Because of the complicated spatial coupling characteristics of BFDM between the two windings, the control methods based on the model of BFDM are very complicated. A PID neural network controller (PIDNN) is designed and applied to the speed regulation of BFDM. The exact speed-tracking is then realized by PIDNN controller after training. The dynamics is satisfactory. Finally, the simulaiton result validates the feasibility and effectiveness of this method.