引用本文:桂卫华,宋海鹰,阳春华.Hammerstein-Wiener模型最小二乘向量机辨识及其应用[J].控制理论与应用,2008,25(3):393~397.[点击复制]
GUI Wei-hua,SONG Hai-ying,YANG Chun-hua.Hammerstein-Wiener model identified by least-squares-support-vector machine and its application[J].Control Theory and Technology,2008,25(3):393~397.[点击复制]
Hammerstein-Wiener模型最小二乘向量机辨识及其应用
Hammerstein-Wiener model identified by least-squares-support-vector machine and its application
摘要点击 1957  全文点击 2271  投稿时间:2007-03-14  修订日期:2007-09-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.3.002
  2008,25(3):393-397
中文关键词  Hammerstein-Wiener模型  最小二乘向量机  系统辨识  智能建模  铜转炉吹炼预测
英文关键词  Hammerstein-Wiener model  least squares vector machine  system identification  intelligence model  copper converting prediction
基金项目  国家自然科学基金资助项目(60634020,60574030); 国家重点基础研究发展规划资助项目(2002cb312200); 博士点基金资助项目(20050533016).
作者单位
桂卫华 中南大学 信息科学与工程学院, 湖南 长沙 410083 
宋海鹰 中南大学 信息科学与工程学院, 湖南 长沙 410083 
阳春华 中南大学 信息科学与工程学院, 湖南 长沙 410083 
中文摘要
      借鉴最小二乘支持向量机求解的思路, 文中提出了辨识多输入–单输出Hammerstein-Wiener模型的方法.引入共线性约束假设, 将辨识问题转换为有约束的优化问题, 从而辨识出Hammerstein-Wiener模型的参数. 基于Hammerstein-Wiener模型, 我们建立了一个多输入–单输出的滚动预测模型, 对铜转炉造渣S2期吹炼所需总氧量进行了预测, 其相对均方根误差为12.1%. 仿真结果表明, 该模型预测准确、具有较好的应用价值.
英文摘要
      The identification method for a multi-input single-output Hammerstein-Wiener model is proposed by using the solving method of the least-squares-support-vector machine. The identification problem is converted into a constrained optimization problem by assuming collinear constraints so that the parameters of Hammerstein-Wiener model can be identified. Based on the Hammerstein-Wiener model, a multi-input single-output receding-horizon prediction model is developed for predicting the total oxygen quantity required by a copper converter in slag making S2 stage. The relative root-meansquare error (RRMSE) is 12.1%. The simulation research shows that this model provides accurate prediction and is with desirable application value.