引用本文:肖本贤,王晓伟,朱志国,刘一福.基于改进PSO算法的过热汽温神经网络预测控制[J].控制理论与应用,2008,25(3):569~573.[点击复制]
XIAO Ben-xian,WANG Xiao-wei,ZHU Zhi-guo,LIU Yi-fu.Neural network predictive control for superheated steam temperature based on modified particle swarm optimization[J].Control Theory and Technology,2008,25(3):569~573.[点击复制]
基于改进PSO算法的过热汽温神经网络预测控制
Neural network predictive control for superheated steam temperature based on modified particle swarm optimization
摘要点击 1678  全文点击 1804  投稿时间:2006-05-17  修订日期:2006-12-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.3.035
  2008,25(3):569-573
中文关键词  改进PSO算法  RBF神经网络  优化策略  神经网络预测控制  过热汽温
英文关键词  modified particle swarm optimization (MPSO)  RBF neural networks  optimized strategy  neural network predictive control (NNPC)  superheated steam temperature
基金项目  
作者单位
肖本贤 合肥工业大学 自动化研究所, 安徽 合肥 230009 
王晓伟 合肥工业大学 自动化研究所, 安徽 合肥 230009 
朱志国 合肥工业大学 自动化研究所, 安徽 合肥 230009 
刘一福 安徽省电力科学研究院 热控自动化所, 安徽 合肥 230022 
中文摘要
      将改进粒子群优化算法(MPSO)融合到神经网络预测控制中, 提出了基于MPSO-RBF混合优化策略的模型预测器, 以及基于MPSO算法的非线性优化控制器. 针对过热汽温的控制, 构造了基于神经网络预测控制的串级控制系统, 并就该系统在实现时所涉及到的预测模型、滚动优化算法、反馈校正、仿真参数设置问题等进行了分析, 给出了MPSO算法的粒子编码、操作设计和混合优化算法步骤. 对某超临界600 MW直流锅炉高温过热器的过热汽温控制, 进行了仿真试验, 结果表明该方法具有良好的性能指标和应用前景.
英文摘要
      Combining modified particle swarm optimization (MPSO) with neural network predictive control (NNPC), we propose a model-prediction controller, based-on modified particle swarm optimization (MPSO) and radial basis function (RBF) hybrid optimization strategy (MPSO-RBF), and a nonlinear optimization controller, based-on MPSO. For the superheated steam temperature control, we construct a cascade control system based on the neural network predictive control, and analyze all related problems, including the predictive model, the rolling optimizing algorithm, the feedback adjusting and the simulation-parameter setting. We also present the particle encoded format of MPSO, operating design method, and steps in hybrid optimization algorithm. Simulation experiments of the superheated steam temperature control were done in a super-critical-600 MW direct-current boiler, demonstrating the validity, the superior performance and the application prospects.