引用本文:陈为胜,李俊民,陈国培.非线性关联系统自适应神经网络输出反馈分散控制[J].控制理论与应用,2008,25(4):650~654.[点击复制]
CHEN Wei-sheng,LI Jun-min,CHEN Guo-pei.Adaptive neural network output-feedback decentralized control for nonlinear interconnected systems[J].Control Theory and Technology,2008,25(4):650~654.[点击复制]
非线性关联系统自适应神经网络输出反馈分散控制
Adaptive neural network output-feedback decentralized control for nonlinear interconnected systems
摘要点击 1576  全文点击 1181  投稿时间:2006-06-20  修订日期:2007-08-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.4.011
  2008,25(4):650-654
中文关键词  非线性大系统  神经网络  分散输出反馈控制  积分反推
英文关键词  nonlinear large-scale system  neural network  decentralized output-feedback control  backstepping
基金项目  国家自然科学基金资助项目(60374015, 60775013).
作者单位E-mail
陈为胜 西安电子科技大学 应用数学系, 陕西 西安 710071 wshchen@126.com 
李俊民   
陈国培 西安电子科技大学 应用数学系, 陕西 西安 710071  
中文摘要
      针对一类带有完全未知关联项的非线性大系统, 提出一种自适应神经网络输出反馈分散控制方法. 采用神经网络逼近未知的关联项, 因此对关联项常做的假设如匹配条件, 被上界函数所界定等不再要求. 在神经元输入中采用参考信号取代关联信号, 从而成功地避免了对关联信号的微分. 保证了闭环系统所有信号半全局一致最终有界, 证明了跟踪误差收敛于一个包含原点的小残集.
英文摘要
      An adaptive neural network output-feedback decentralized control scheme is proposed for a class of largescale nonlinear systems with completely unknown interconnections. Neural networks are employed to approximate to the unknown interconnections, eliminating the common assumptions on interconnections such as matching condition, being bounded by upper bounding functions. By replacing the interconnected signals in neural inputs with the reference signals, the differentiation of interconnected signals is then successfully avoided. Moreover, all signals in the closed-loop system are guaranteed to be semi-globally uniformly ultimately bounded, and the tracking errors are proved to converge to a small residual set around the origin.