引用本文:吴俊斌,苏为洲.具有扰动输入的不确定性非线性系统的输出调节极限性能[J].控制理论与应用,2009,26(1):15~22.[点击复制]
WU Jun-bin,SU Wei-zhou.Performance limits in output regulation of an uncertain nonlinear system under disturbances[J].Control Theory and Technology,2009,26(1):15~22.[点击复制]
具有扰动输入的不确定性非线性系统的输出调节极限性能
Performance limits in output regulation of an uncertain nonlinear system under disturbances
摘要点击 2695  全文点击 1917  投稿时间:2007-04-03  修订日期:2008-04-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.1.003
  2009,26(1):15-22
中文关键词  极限性能  输出调节  非线性系统  非最小相位系统  零动态
英文关键词  performance limitations  output regulation  nonlinear systems  nonminimum phase systems  zero dynamics
基金项目  国家自然科学基金资助项目(60834003, 60774057, 60474028); 广东省自然科学基金资助项目(5006529).
作者单位E-mail
吴俊斌 华南理工大学 自动化科学与工程学院, 广东 广州 510640 raybenwu@126.com 
苏为洲 华南理工大学 自动化科学与工程学院, 广东 广州 510640 wzhsu@scut.edu.cn 
中文摘要
      本文研究了一类具有扰动输入的不确定性非线性系统的输出调节问题, 给出了该类系统在最差的不确定性参数和扰动输入情况下系统输出调节的极限性能. 所讨论的非线性系统是可镇定非最小相位系统, 并且该系统的零动态由“鲁棒输入对状态稳定(robust input-to-state stable)部分”和“不稳定但可镇定部分”组成. 假设系统的不确定性参数和扰动输入分别以非线性函数和仿射形式同时出现在系统零动态的鲁棒输入对状态稳定部分和系统的可线性化部分, 而且其可线性化部分的不确定性具有下三角形结构形式. 该系统输出调节问题的性能以其输出信号能量作为度量. 对于上述非线性系统, 在最差的不确定性参数和扰动输入情况下, 输出调节问题的极限性能只取决于镇定其零动态“不稳定部分”所需的最小能量.
英文摘要
      The attainable performance of the output regulation is studied for an uncertain nonlinear system under disturbances. The nonlinear system is a stabilizable nonminimum phase system with zero dynamics consisting of a robust input-to-state stable component and an unstable but stabilizable component. It is assumed that the uncertain parametervector and disturbances only enter the robust input-to-state stable component of the zero dynamics and the linearizable part of the system. Furthermore, the function of the uncertain parameter-vector forms a lower triangular structure in the linearizable part of the system. The performance of this problem is measured by the energy of the output of the system. It is shown that the attainable performance of output regulation under the worst uncertain parameter-vector and disturbances for the nonlinear system is determined only by the minimum energy required for stabilizing the unstable part of its zero dynamics.