引用本文: | 殷明慧,邹 云,薛禹胜.一类基于轨迹的稳定性及其在电力系统的验证分析[J].控制理论与应用,2009,26(3):249~255.[点击复制] |
YIN Ming-hui,ZOU Yun,XUE Yu-sheng.A class of stability theory based on trajectories and its applications to power systems[J].Control Theory and Technology,2009,26(3):249~255.[点击复制] |
|
一类基于轨迹的稳定性及其在电力系统的验证分析 |
A class of stability theory based on trajectories and its applications to power systems |
摘要点击 1507 全文点击 853 投稿时间:2007-09-03 修订日期:2008-11-06 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2009.3.004 |
2009,26(3):249-255 |
中文关键词 轨迹稳定性 暂态稳定性 应急控制 |
英文关键词 trajectory stability transient stability emergency control |
基金项目 国家自然科学基金资助项目(60474078, 60574015, 60874007); 高等学校博士学科点专项科研基金资助项目(20050288023, 20070288055, 200802880024). |
|
中文摘要 |
本文基于已有的电力工程实用方法, 建立了一类基于轨迹的Lagrange稳定性的数学描述及其判定方法. 首先提出了轨迹稳定性和摆次平稳性的概念,
并给出了应用轨迹几何特征, 即动态鞍点, 来判断轨迹稳定性的充分条件. 其次, 通过大量的电力系统仿真计算, 验证了这一理论在电力系统工程上的
有效性. 同时, 研究结果也为电力工程及其他领域的应急控制下的基于轨迹的稳定分析判定方法奠定了数学理论基础. |
英文摘要 |
On the basis of the existing electrical power engineering methods, a class of mathematical descriptions and the criterion of Lagrange stability based on trajectories are proposed. Firstly, the concept of trajectory stability and swing steadiness are defined. The sufficient conditions for the trajectory stability in terms of the geometric characteristics, called the dynamical saddle points, are then presented. Finally, the proposed methodology is verified by simulations of power systems. It provides a mathematical foundation for the emergency control in electrical power engineering and other fields. |
|
|
|
|
|