引用本文:胡振涛,潘 泉,梁 彦,杨 峰.基于进化采样的粒子滤波算法[J].控制理论与应用,2009,26(3):269~273.[点击复制]
HU Zhen-tao,PAN Quan,LIANG Yan,YANG Feng.The particle filter algorithm based on evolution sampling[J].Control Theory and Technology,2009,26(3):269~273.[点击复制]
基于进化采样的粒子滤波算法
The particle filter algorithm based on evolution sampling
摘要点击 2035  全文点击 1604  投稿时间:2007-10-15  修订日期:2008-07-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.3.008
  2009,26(3):269-273
中文关键词  粒子滤波  重采样  粒子退化  进化计算
英文关键词  particle filter  re-sampling  particle degeneracy  evolution computation
基金项目  国家自然科学基金资助项目(60634030,60702066); 国家航空基金资助项目(2007ZC53037); 国家航天科技创新基金资助项目(CASC0214).
作者单位E-mail
胡振涛 西北工业大学 自动化学院, 陕西 西安 710072 guchenshou@yahoo.com.cn 
潘 泉 西北工业大学 自动化学院, 陕西 西安 710072 quanpan@nwpu.edu.cn 
梁 彦 西北工业大学 自动化学院, 陕西 西安 710072 liangyan@nwpu.edu.cn 
杨 峰 西北工业大学 自动化学院, 陕西 西安 710072 yangfeng@nwpu.edu.cn 
中文摘要
      在粒子滤波算法中, 重采样的引入有效地改善粒子退化现象, 但同时也导致了粒子多样性减弱问题的产生. 本文给出了一种基于进化采样的改进粒子滤波算法. 该算法在重采样过程后, 首先根据马尔可夫链蒙特卡罗(Markov-Chain-Monte-Carlo, MCMC) 技术和遗传算法中的模拟二进制交叉原理生成候选粒子, 并利用适应度函数完成对于其权重的度量. 然后结合当前时刻的重采样粒子构建候选粒子集, 进而提升了重采样后粒子的多样性, 最终依据粒子自身的权重实现粒子的优选. 仿真结果表明: 该算法可有效地提高
英文摘要
      In particle filter algorithm, the re-sampling step effectively solves the problem of particles degeneracy, however, it reduces the particle variety. An improved particle filtering algorithm is given based on the evolution sampling. In the process of re-sampling, this algorithm generates candidate particles based on the Markov-Chain-Monte-Carlo(MCMC) technique and the analog binary crossover principle, and then, weighs the sampling particles against their importance according to the fitness function. The current re-sampling particles are then associated in constructing the candidate particle set to enhance the variety of re-sampling particles. Finally, the optimizing selection of particles is realized based on the particle weigh. Simulation results show the method can effectively improve the state estimation precision.