引用本文:杨春山,王雪梅,邓自立.带不确定参数和噪声方差的鲁棒观测融合Kalman滤波器[J].控制理论与应用,2015,32(12):1635~1640.[点击复制]
YANG Chun-shan,WANG Xue-mei,DENG Zi-li.Robust measurement fusion Kalman filter with uncertain parameters and noise variances[J].Control Theory and Technology,2015,32(12):1635~1640.[点击复制]
带不确定参数和噪声方差的鲁棒观测融合Kalman滤波器
Robust measurement fusion Kalman filter with uncertain parameters and noise variances
摘要点击 2702  全文点击 1552  投稿时间:2014-10-20  修订日期:2015-09-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.14139
  2015,32(12):1635-1640
中文关键词  不确定多传感器系统  加权观测融合  极大极小鲁棒Kalman滤波器  虚拟白噪声  Lyapunov方程方法
英文关键词  uncertain multisensor system  weighted measurement fusion  minimax robust Kalman filter  fictitious white noise  Lyapunov equation approach
基金项目  国家自然科学基金项目(60874063, 60374026)资助.
作者单位
杨春山 黑龙江大学 
王雪梅 黑龙江大学 
邓自立* 黑龙江大学 
中文摘要
      对带不确定参数和噪声方差的多传感器定常系统, 引入虚拟白噪声补偿不确定参数, 可将其转化为带已知 参数和不确定噪声方差系统. 应用极大极小鲁棒估值原理和加权最小二乘法, 基于带噪声方差保守上界的最坏情形 保守系统, 提出了鲁棒加权观测融合Kalman滤波器, 并证明了它与集中式融合鲁棒Kalman滤波器是等价的, 且融合 器的鲁棒精度高于每个局部滤波器鲁棒精度. 一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如 何搜索保守性较小的虚拟噪声方差上界.
英文摘要
      For the multisensor time-invariant system with uncertain parameters and noise variances, by introducing a fictitious white noise to compensate the uncertain parameters, we can convert the uncertain system into the system with known parameters and uncertain noise variances. Using the minimax robust estimation principle and weighted least squares method, we present a robust weighted measurement fusion Kalman filter based on the worst-case conservative system with the conservative upper bounds of noise variances. We prove that this Kalman filter is equivalent to the robust centralized fusion Kalman filter, and its robust accuracy is higher than that of each local robust Kalman filter. A Monte-Carlo simulation example shows how to find the robust region of uncertain parameter and how to search the less-conservative upper bound of fictitious noise variances.