引用本文:徐图,何大可.超球体多类支持向量机理论[J].控制理论与应用,2009,26(11):1293~1297.[点击复制]
Xu Tu,HE Da-ke.Theory of hypersphere multiclass SVM[J].Control Theory and Technology,2009,26(11):1293~1297.[点击复制]
超球体多类支持向量机理论
Theory of hypersphere multiclass SVM
摘要点击 3146  全文点击 1464  投稿时间:2008-03-17  修订日期:2009-02-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.11.CCTA080196
  2009,26(11):1293-1297
中文关键词  支持向量机  多类支持向量机  SMO训练算法  推广性能  超球体多类支持向量机
英文关键词  support vector machine(SVM)  multi-class SVM  SMO algorithm  generalization performance  HSMC-SVM
基金项目  西南交通大学青年教师科研起步项目(2008Q109).
作者单位E-mail
徐图* 西南交通大学信息科学与技术学院 yian888@163.com 
何大可 西南交通大学信息科学与技术学院  
中文摘要
      目前的多类分类器大多是经二分类器组合而成的, 存在训练速度较慢的问题, 在分类类别多的时候, 会遇到很大困难, 超球体多类支持向量机将超球体单类支持向量机扩展到多类问题, 由于每类样本只参与一个超球体支持向量机的训练, 因此, 这是一种直接多类分类器, 训练效率明显提高. 为了有效训练超球体多类支持向量机, 利用SMO算法思想, 提出了超球体支持向量机的快速训练算法. 同时对超球体多类支持向量机的推广能力进行了理 论上的估计. 数值实验表明, 在分类类别较多的情况, 这种分类器的训练速度有很大提高, 非常适合解决类别数较多的分类问题. 超球体多类支持向量机为研究快速直接多类分类器提供了新的思路.
英文摘要
      Constructed by standard binary classes support vector machine(SVM), present multiclass SVMs are usually very slow to be trained. When a large number of categories of data are to be classified, the training work could be very difficult. By extending the hypersphere one-class SVM(HSOC-SVM) to a hypersphere multiclass SVM(HSMC-SVM), we build a fast training classifier HSOC-SVM. Its training speed is higher than that of the present multiclass classifiers, because each category data trains only one HSOC-SVM. In order to improve the training speed for the HSMC-SVM, we propose a training algorithm based on the existing algorithm for SMO. Meanwhile, the theoretic upper bound of the generalized error of HSMC-SVM is analyzed for evaluating the general performance of HSMC-SVM. Numeric experiments show that the training speed of HSMC-SVM is especially improved when many categories of data are to be classified. Thus, HSMC-SVM provides a new idea for developing fast-directed multiclass classifiers in machine learning area.