引用本文:刘清,岳东.一类有输入噪声扰动的逆系统无偏参数辨识算法研究[J].控制理论与应用,2009,26(9):1031~1034.[点击复制]
liu qing,Yue Dong.A class of unbiased identification for inverse system with input noises[J].Control Theory and Technology,2009,26(9):1031~1034.[点击复制]
一类有输入噪声扰动的逆系统无偏参数辨识算法研究
A class of unbiased identification for inverse system with input noises
摘要点击 2047  全文点击 1169  投稿时间:2008-06-17  修订日期:2008-12-11
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.9.CCTA080625
  2009,26(9):1031-1034
中文关键词  逆系统  参数辨识  输入噪声  偏差消除
英文关键词  inverse system  parameter identification  input noise  bias-eliminated
基金项目  国家自然科学基金资助项目(60774060); 江苏省高校自然科学基金资助项目(06KJD520099).
作者单位E-mail
刘清* 南京师范大学数学与计算机科学学院 njnulq@163.com 
岳东 南京师范大学电气与自动化工程学院  
中文摘要
      对逆系统建模时,原系统的输出作为逆系统参数辨识时的输入. 由于原系统输出存在测量噪声, 且噪声方差未知, 采用普通最小二乘法辨识, 无法得到逆系统参数的一致无偏估计. 为此, 本文研究了一种有输入扰动的的逆系统无偏参数辨识算法, 该算法先通过小波变换估计输入信号噪声的方差, 再由估计得到的方差, 通过偏差消除的递推最小二乘法, 对逆系统的参数进行无偏辨识. 该算法降低了对输入辨识信号为白噪声的要求, 具有较强的实用性. 由于采用递推运算, 该算法也可以用于逆系统参数的在线辨识. 最后, 通过实验验证了该算法的有效性.
英文摘要
      In identifying the inverse system, the input is the output from the original system. This signal is corrupted by noises with unknown variance. When the ordinary least-squares method is applied to estimate the parameters of the inverse system, the estimates turn out to be biased. A new identification algorithm for bias compensation is proposed. Therein, the noise variance of the inverse system input is first estimated using the wavelet transform, and then, a recursive least-squares method with bias-elimination is used to estimate the parameters of the inverse system. Thus, the proposed algorithm does not require the input signal to be the white noise with a zero mean. Since the computation is recursive, it can be implemented online for estimating parameters of the inverse system. Experimental results show that the approach is effective.