引用本文:邓高峰,张雪萍,刘彦萍.一种障碍环境下机器人路径规划的蚁群粒子群算法[J].控制理论与应用,2009,26(8):879~883.[点击复制]
Deng Gaofeng,Zhang Xueping,Liu Yanping.Ant colony optimization and particle swarm optimization for robot-path planning in obstacle environment[J].Control Theory and Technology,2009,26(8):879~883.[点击复制]
一种障碍环境下机器人路径规划的蚁群粒子群算法
Ant colony optimization and particle swarm optimization for robot-path planning in obstacle environment
摘要点击 2526  全文点击 2386  投稿时间:2008-06-27  修订日期:2009-01-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2009,26(8):879-883
中文关键词  路径规划  障碍环境  蚁群算法  粒子群算法
英文关键词  path planning  obstacle environment  ant colony optimization  particle swarm optimization
基金项目  河南省高校科技创新人才支持计划资助项目(2008HASTIT012); 新世纪优秀人才支持计划资助项目(NCET–08–0660).
作者单位E-mail
邓高峰* 河南工业大学 dengfeng0125@126.com 
张雪萍 河南工业大学  
刘彦萍 河南工业大学  
中文摘要
      针对机器人在障碍环境下寻找最优路径问题, 提出了一种障碍环境下机器人路径规划的蚁群粒子群算法.该方法有效地结合了粒子群算法和蚁群算法的优点, 采用栅格法进行环境建模, 利用粒子群算法的快速简洁等特点得到蚁群算法初始信息素分布, 以减少迭代次数, 加快算法的收敛速度; 同时利用蚁群算法之间的可并行性, 采用分布式技术实现蚂蚁之间的并行搜索, 求解精度高等优点, 求精确解. 仿真实验结果证明了该方法的有效性, 是机器人路径规划的一种较好的方法.
英文摘要
      For searching the best path for a robot in an obstacle environment, this paper proposes an algorithm of ant colony optimization(ACO) and particle swarm optimization(PSO) for path planning. The new algorithm effectively combines the advantages of ACO and PSO. It adopts the grid method for environment modeling and makes use of the efficiency and succinctness of PSO to obtain the initial distribution of pheromone, reducing the number of iterations and accelerating the convergence. At the same time, by using the parallelizability of ants and distributed parallelized-searching technology, the performance of the algorithm is effectively improved. The simulation result shows the effectiveness of the proposed algorithm in solving the problem of path planning.