引用本文: | 金辉宇,殷保群.非线性采样系统指数稳定的新条件[J].控制理论与应用,2009,26(8):821~826.[点击复制] |
JIN Hui-yu,YIN Bao-qun.New conditions for the exponential stability of nonlinear sampled-data systems[J].Control Theory and Technology,2009,26(8):821~826.[点击复制] |
|
非线性采样系统指数稳定的新条件 |
New conditions for the exponential stability of nonlinear sampled-data systems |
摘要点击 1965 全文点击 2855 投稿时间:2008-07-14 修订日期:2008-12-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2009.8.CCTA080739 |
2009,26(8):821-826 |
中文关键词 非线性 采样系统 指数稳定 近似模型 Lyapunov函数 |
英文关键词 nonlinear sampled-data systems exponential stability approximate model Lyapunov function |
基金项目 中国科学技术大学青年基金项目(KA2100100002) |
|
中文摘要 |
研究了非线性采样系统的稳定性问题. 对以采样周期为参数的离散时间系统族, 证明了全局指数稳定的Lyapunov定理和逆定理. 分别基于系统的一般近似模型和Euler近似模型, 给出了闭环系统全局指数稳定的新条件. 与现有结果相比, 取消了Lyapunov函数全局Lipschitz连续的假设, 减弱了闭环系统全局指数稳定的充分条件.
|
英文摘要 |
Stability problem of nonlinear sampled-data systems is investigated. The Lyapunov theorem and its converse
theorem of globally exponential stability for the discrete-time systems family in which the sampling period is a parameter are proved. New sufficient conditions that guarantee globally exponential stability of the closed-loop sampled-data systems are presented respectively for the general approximation model and the Euler approximation model. Compared with earlier results, new conditions ignore the assumption that Lyapunov functions are globally Lipschitz, and hence weaken the sufficient conditions to warrant globally exponential stability of the closed-loop systems. |