引用本文:阎晓妹,刘丁,郭会军.分数阶Chen混沌系统的径向基函数神经滑模控制[J].控制理论与应用,2010,27(3):344~349.[点击复制]
YAN Xiao-mei,LIU Ding,GUO Hui-jun.Chaos control of fractional order Chen system via radial basis function neural network[J].Control Theory and Technology,2010,27(3):344~349.[点击复制]
分数阶Chen混沌系统的径向基函数神经滑模控制
Chaos control of fractional order Chen system via radial basis function neural network
摘要点击 2190  全文点击 1243  投稿时间:2009-02-20  修订日期:2009-09-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2010,27(3):344-349
中文关键词  分数阶  径向基函数神经网络  滑模  混沌控制
英文关键词  fractional order  RBF neural network  sliding mode  chaos control
基金项目  国家自然科学基金资助项目(60804040).
作者单位E-mail
阎晓妹* 西安理工大学 自动化与信息工程学院 yxm1302@126.com 
刘丁 西安理工大学 自动化与信息工程学院  
郭会军 西安理工大学 自动化与信息工程学院  
中文摘要
      针对带有参数扰动和外部干扰的分数阶Chen混沌系统, 提出一种径向基函数(RBF)神经滑模控制方法. 设计滑模切换函数, 将其作为RBF神经网络的唯一输入, 网络的权值可依据滑模趋近条件在线调整. 基于Lyapunov稳定性理论, 分析了该方法的稳定性. 仿真结果表明该控制方法简化了常规神经网络控制结构的复杂性, 削弱了滑模控制的抖振程度, 对参数扰动和外部干扰具有较好的鲁棒性.
英文摘要
      A radial basis function(RBF) neural network sliding mode controller for fractional order Chen system with parametric perturbation and external disturbances is presented. The sliding surface is designed as the only input to the RBF neural network and the weights of the network can be adjusted on-line according to the reaching law. Based on the Lyapunov stability theorem, we performed the stability analysis for the controller. The simulation results show that the proposed method simplifies the complex structure of general neural network, minimizes the chattering problem in sliding mode control, and provides the robustness to parametric perturbation and external disturbances.