引用本文:武星,楼佩煌,唐敦兵.基于精英进化导向的多目标PID参数优化[J].控制理论与应用,2010,27(9):1235~1239.[点击复制]
WU Xing,LOU Pei-huang,TANG Dun-bing.Multi-objective optimization for PID parameter based on elitist-evolution guidance[J].Control Theory and Technology,2010,27(9):1235~1239.[点击复制]
基于精英进化导向的多目标PID参数优化
Multi-objective optimization for PID parameter based on elitist-evolution guidance
摘要点击 2473  全文点击 1527  投稿时间:2009-05-19  修订日期:2009-12-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2010.9.CCTA090636
  2010,27(9):1235-1239
中文关键词  PID参数整定  多目标优化  遗传算法  精英导向  Pareto最优解
英文关键词  PID parameter tuning  multi-objective optimization  genetic algorithm  elitist-guidance  Pareto optimal solutions
基金项目  南京航空航天大学基本科研业务费专项科研基金资助项目(NJ2010025); 南京航空航天大学引进人才科研启动基金资助项目(S1026-053); 霍英东教育基金资助项目(111056).
作者单位E-mail
武星* 南京航空航天大学 机电学院 Wustar5353@nuaa.edu.cn 
楼佩煌 南京航空航天大学 机电学院  
唐敦兵 南京航空航天大学 机电学院  
中文摘要
      在多目标优化问题中, 决策者必须对Pareto前沿的众多非劣解做出选择. 本文将决策偏好融入Pareto优化过程, 提出一种基于精英导向机制的多目标遗传算法, 根据决策偏好选择Pareto最优解为精英, 利用无损有限精度法和归一增量距离保持种群多样性, 通过多种群进化机制将决策偏好的影响传播到整个种群. 该方法成功应用于自动导引车(AGV)伺服系统的PID参数优化, 可根据决策偏好快速有效地定向搜索Pareto最优解, 保证伺服控制达到路 径跟踪要求的速度响应性能.
英文摘要
      For multi-objective optimization problems, a decision-maker must choose one solution from many nondominated ones in Pareto front. Decision preferences are introduced into Pareto optimization in this paper, and a multiobjective genetic algorithm based on elitist-guidance mechanism is presented. Elitists are selected from Pareto optimal solutions according to decision-making preferences. The lossless-finite-precision method and the normalized incrementdistance are proposed to keep the population diversity. The effect of decision-making preferences is spread among the entire population by using the multi-population evolution mechanism. This approach is applied successfully to PID parameter optimization of automated-guided-vehicle(AGV) servo system, which can make a fast, effective and directional search for Pareto optimal solutions according to decision-making preferences, and ensures the servo control for achieving the velocity-response performance required by path tracking.