引用本文: | 李琳,刘士新,唐加福.B2C环境下带预约时间的车辆路径问题及多目标优化蚁群算法[J].控制理论与应用,2011,28(1):87~93.[点击复制] |
LI Lin,LIU Shi-xin,TANG Jia-fu.Vehicle routing problem with time reservation under B2C electronic commerce and ant colony algorithm for multi-objective optimization[J].Control Theory and Technology,2011,28(1):87~93.[点击复制] |
|
B2C环境下带预约时间的车辆路径问题及多目标优化蚁群算法 |
Vehicle routing problem with time reservation under B2C electronic commerce and ant colony algorithm for multi-objective optimization |
摘要点击 2699 全文点击 1675 投稿时间:2009-12-05 修订日期:2010-04-13 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2011.1.CCTA091575 |
2011,28(1):87-93 |
中文关键词 B2C电子商务 车辆路径问题 多目标优化 Pareto最优解 时间窗 蚁群算法 |
英文关键词 B2C electronic commerce vehicle routing problem multi-objective optimization Pareto optimal solution time windows ant colony algorithm |
基金项目 国家自然科学基金资助项目(70771020,70721001); 国家“863”计划/先进制造技术领域专题项目(2007AA04Z194); 教育部新世纪优秀人才支持计划(NCET–06–0286). |
|
中文摘要 |
根据B2C(商家对客户)电子商务环境下物流配送的特点建立了带预约时间的车辆路径问题(VRP)数学模型, 设计了求解多目标优化的蚁群算法, 各个目标具有相同的重要性. 在蚁群的状态转移概率中引入预约时间窗宽度及车辆等待时间因素, 记录优化过程中产生的Pareto最优解, 用Pareto最优解集来指导蚁群的信息素更新策略. 采用改造的Solomon数据进行仿真实验, 用Solomon最优解与本文的结果进行比较, 实验结果验证了模型的合理性及算法的有效性. |
英文摘要 |
According to characteristics of logistics distribution in B2C(business to customer) electronic commerce, a mathematical model about vehicle routing problem(VRP) with time reservation is developed. An ant colony algorithm for solving multi-objective optimization is designed. Each objective has the same importance. The algorithm introduces factors of booking time window width and vehicle waiting time into state transfer rules, and records Pareto optimal solution generated in the optimal process. Pareto optimal set is employed to guide the pheromone-updating tactics. Improved Solomon data are adopted in emulation experiments. Solomon optimal solution is compared with the result of emulation experiments. Experiment results show the rationality of the proposed model and the effectiveness of the algorithm. |