引用本文:高德欣,魏蕊,唐功友.非线性系统近似最优PD动态补偿控制[J].控制理论与应用,2011,28(12):1837~1842.[点击复制]
GAO De-xin,WEI Rui,TANG Gong-you.Approximate optimal PD dynamic compensation control for nonlinear systems[J].Control Theory and Technology,2011,28(12):1837~1842.[点击复制]
非线性系统近似最优PD动态补偿控制
Approximate optimal PD dynamic compensation control for nonlinear systems
摘要点击 2686  全文点击 2221  投稿时间:2010-01-30  修订日期:2011-03-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.12.CCTA100114
  2011,28(12):1837-1842
中文关键词  非线性系统  动态补偿  最优控制  PD控制
英文关键词  nonlinear systems  dynamic compensation  optimal control  PD controller
基金项目  国家自然科学基金资助项目(60804005); 山东省自然科学基金项目资助项目(ZR2011FQ006); 江苏省博士后基金资助项目(0902105c); 中国博士后科学基金资助项目(20100481101).
作者单位E-mail
高德欣* 青岛科技大学 自动化与电子工程学院 gaodexin@qust.edu.cn 
魏蕊 青岛科技大学 自动化与电子工程学院  
唐功友 中国海洋大学 信息科学与工程学院  
中文摘要
      本文研究了一类基于动态补偿的非线性系统的近似最优PD控制的问题. 用微分方程的逐次逼近理论将非线性系统的最优控制问题转化为求解线性非齐次两点边值序列问题, 并提供了从时域最优状态反馈到频域最优PD控制器参数的优化方法, 从而获取系统最优的动态补偿网络, 设计出最优PD整定参数, 给出其实现算法. 最后仿真示例将所提出的方法与传统的线性二次型调节器(LQR)逐次逼近方法相比较, 表明该方法具有良好的动态性能和鲁棒性.
英文摘要
      We consider the approximate optimal PD control for nonlinear systems based on the dynamic compensation. By using the successive approximation theory of differential equations, the original optimal control problem of nonlinear systems is transformed into a sequence of non-homogeneous linear two-point-boundary-value(TPBV) problems, which converts the optimization of the state variables feedback in the time domain into the optimization of PD controller parameters in the frequency domain. According to this method, the system optimal dynamic compensation network is obtained; the optimally tuned parameters of PD controller are designed and the realization algorithm is developed. Simulations show that the result is more robust and with better dynamic performance than that obtained by successively approximating the traditional linear quadratic regulator(LQR).