引用本文:彭双春,韩大鹏,潘亮,胡天江,沈林成.考虑参数优化的BTT导弹三维非线性制导律[J].控制理论与应用,2011,28(9):1069~1074.[点击复制]
PENG Shuang-chun,HAN Da-peng,PAN Liang,HU Tian-jiang,SHEN Lin-cheng.Three-dimensional nonlinear guidance law with parameter optimization for bank-to-turn missile[J].Control Theory and Technology,2011,28(9):1069~1074.[点击复制]
考虑参数优化的BTT导弹三维非线性制导律
Three-dimensional nonlinear guidance law with parameter optimization for bank-to-turn missile
摘要点击 2928  全文点击 1785  投稿时间:2010-05-03  修订日期:2011-01-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.9.CCTA100473
  2011,28(9):1069-1074
中文关键词  导弹  BTT  三维制导  旋量  参数优化
英文关键词  missiles  bank-to-turn  three-dimensional guidance  twist  parameter optimization
基金项目  国家安全重大基础研究资助项目(6138101007).
作者单位E-mail
彭双春* 国防科学技术大学 机电工程与自动化学院 psc1212001@yahoo.com.cn 
韩大鹏 国防科学技术大学 航天与材料工程学院  
潘亮 国防科学技术大学 机电工程与自动化学院  
胡天江 国防科学技术大学 机电工程与自动化学院  
沈林成 国防科学技术大学 机电工程与自动化学院  
中文摘要
      针对BTT(bank-to-turn)导弹制导过程中的通道耦合问题, 设计了一种考虑制导参数优化的新型的三维非线性制导律. 首先, 采用旋量描述方法构建弹目视线方位模型, 采用矢量描述方法构建弹目视线角速度模型, 从而得到了导弹制导的三维非线性模型; 然后, 将制导律分为制导控制项和耦合补偿项. 基于制导控制项最优设计相应的目标函数. 同时, 在不损失制导信息的情况下, 将制导模型转化为线性形式; 最后, 分别针对无终端约束和有终端约束情况, 基于二次型最优方法得到了三维制导律. 该制导律既解决了通道解耦, 其制导参数又满足一定物理意义下的最优性. 仿真结果验证了本文所设计制导律的有效性.
英文摘要
      To deal with the coupling between channels in the guidance system for a bank-to-turn(BTT) missile, we propose a new three-dimensional(3D) nonlinear guidance law with parameter optimization. The azimuth model of the line of sight(LOS) is developed by the twist-description approach, and the LOS angular velocity model is built with the vector description method. Thus, a 3D nonlinear model of missile guidance is established. The guidance law is divided into the guidance control part and the coupling compensation part. By optimizing the performance index, we determine the guidance control signal. The guidance model is then transformed into a linear form without the loss of guidance information; and a three-dimensional guidance laws are deduced for the quadratic performance index with terminal constraints or non-terminal constrains, respectively. This guidance law not only solves the coupling problem between tunnels but also provides the optimal control with physically realizable parameters. Simulation validates the effectiveness of the proposed method.