引用本文:王丽杨,刘治,赵之光,章云.一种小样本支持向量机控制器在两足机器人步态控制的研究[J].控制理论与应用,2011,28(8):1133~1139.[点击复制]
WANG Li-yang,LIU Zhi,ZHAO Zhi-guang,ZHANG Yun.Support-vector-machines learning controller based on small sample sizes for biped robots[J].Control Theory and Technology,2011,28(8):1133~1139.[点击复制]
一种小样本支持向量机控制器在两足机器人步态控制的研究
Support-vector-machines learning controller based on small sample sizes for biped robots
摘要点击 3027  全文点击 1958  投稿时间:2010-07-03  修订日期:2010-12-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.8.CCTA100777
  2011,28(8):1133-1139
中文关键词  两足机器人  步态  小样本  学习控制  支持向量机
英文关键词  biped robots  gait  small sample sizes  learning control  support-vector-machines(SVM)
基金项目  国家自然科学基金资助项目(U0735003, 60974047); 广东省自然科学基金资助项目(8351009001000002, 9151009001000011); 广东省科技计划资助项目(2009B010900051); 教育部霍英东青年教师基金资助项目(121061); 广东省高等学校高层次人才项目资助项目.
作者单位E-mail
王丽杨* 广东工业大学 自动化学院
顺德职业技术学院 电子工程系 
ddd0wwl@sohu.com 
刘治 广东工业大学 自动化学院  
赵之光 广东工业大学 自动化学院  
章云 广东工业大学 自动化学院  
中文摘要
      神经网络等传统的机器学习方法是基于样本数目无穷大的经验风险最小化原则, 这对非确定环境下有限样本的步态学习控制非常不利. 针对两足机器人面临的非确定环境适应性难题, 提出了一种基于支持向量机(SVM)的两足机器人步态控制方法, 解决了小样本条件下的步态学习控制问题. 提出了一种基于混合核的步态回归方法, 仿真研究表明了这种方法比全局核和局部核分别单独用于步态学习时有优越性. SVM以踝关节及髋关节的轨迹作为输入, 相应的满足ZMP判据的上体轨迹作为输出, 利用有限的理想步态样本对机器人上体轨迹与腿部轨迹之间的动态运动关系进行学习, 然后将训练好的SVM置入机器人控制系统, 从而增强了步态控制的鲁棒性, 有利于实现两足机器人在非结构环境下的稳定步行. 仿真结果表明了所提方法的优越性.
英文摘要
      Conventional machine learning methods such as neural network(NN) use empirical risk minimization(ERM) based on infinite samples, which is disadvantageous to the gait learning control based on small sample sizes for biped robots walking in unstructured, uncertain and dynamic environments. To deal with the stable walking control problem in the dynamic environments for biped robots, we put forward a method of gait control based on support-vector-machines(SVM), which provides a solution for the learning control issue based on small sample sizes. A support vector machine regression(SVR) method for gait control with mixed kernel functions is proposed, and the proposed method shows superior performance when compared with SVR with radial basis function(RBF) kernels or polynomial kernels, respectively. Using ankle trajectory and hip trajectory as inputs, and the corresponding trunk trajectory which guarantees the ZMP criterion as outputs, the SVM is trained based on small sample sizes to learn the dynamic kinematic relationships between the legs and the trunk of the biped robot. Then the trained SVM is incorporated into the control system of the robots. Robustness of the gait control is enhanced, which is advantageous to realizing stable biped walking in unstructured environments. Simulation results demonstrate the superiority of the proposed methods.